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A high energy atomic cluster undergoing frequent structural isomerization behaves like a liquid droplet, from
which atoms or molecules can be emitted. Even after evaporation, the daughter cluster may still keep changing
its structure. We study the dynamics of such an evaporation process of atomic evaporation. To do so, we
develop a statistical rate theory for dissociation of highly nonrigid molecules and propose a simple method
to calculate theabsoluteValueof classical phase-space volume for a potential function that has many locally
stable basins. The statistical prediction of the final distribution of the released kinetic energy is also developed.
A direct application of the Rice-Ramsperger-Kassed-Marcus (RRKM) theory to this kind of multichannel
chemical reaction is prohibitively difficult, unless further modeling and/or assumptions are made. We carry
out a completely nonempirical statistical calculation for these dynamical quantities, in that nothing empirical
is introduced like remodeling (or reparametrization) of artificial potential energy functions or recalibration of
the phase-space volume referring to other “empirical” values such as those estimated with the molecular
dynamics method. The so-called dividing surface is determined variationally, at which the flux is calculated
in a consistent manner with the estimate of the phase-space volume in the initial state. Also, for the correct
treatment of a highly nonrigid cluster, the phase-space volume and flux are estimated without the separation
of vibrational and rotational motions. Both the microcanonical reaction rate and the final kinetic energy
distribution thus obtained have quite accurately reproduced the corresponding quantities given by molecular
dynamics calculations. This establishes the validity of the statistical arguments, which in turn brings about
the deeper physical insight about the evaporation dynamics.

I. Introduction

Dynamics of clusters is very interesting and important in that
it provides a characteristic opportunity to study the fundamental
features, concepts, and laws of chemical reaction dynamics. In
particular, the isomerization dynamics of atomic clusters and
van der Waals clusters composed of identical atoms can be
studied from the view points of, for instance, cooperative
dynamics, the onset of statistical behavior (links between
dynamics and statistical mechanics), and quantum effects
including permutation symmetry in the mesoscopic scale. Argon
clusters are among such objects that have been studied very
intensively in the last two decades. All these features arise from
a single fact that its potential function has many local minima
to support locally stable molecular structures. Therefore, this
isomerization dynamics is a typical example of the so-called
many-valley (multiminimum) dynamics. Indeed, the isomeriza-
tion dynamics of argon clusters has been studied in various
aspects: microcanonical analog of the first-order solid-liquid
phase transitions,1-4 prototype of multichannel chemical
reactions,5-12 and kinematic effect of molecular internal
space,13-16 semiclassical quantization of chaos in isomerization
dynamics.17 They are sometimes studied with an emphasis on
chaos and regularity in Hamiltonian many body systems18-23

Also, the potential landscape for cluster dynamics have been
explored extensively.24-26

In this paper we study the evaporation dynamics of an atomic
Morse cluster, e.g., Ar8, which undergoes dissociation reactions
Ar8 f Ar7 + Ar. [A molecular evaporation Ar8f Ar6 + Ar2

will be reported elsewhere.27] As studied extensively in the
literature cited above, Ar8 undergoes frequent structural isomer-
ization among eight locally stable isomers in an energy range
that is lower than evaporation can take place (see Figure 1).
(Likewise, Ar7 has four isomers.) Therefore, it is quite inter-
esting to see whether the structural transition may occur
simultaneously in the course of dissociation. This is really the
case as will be explicitly shown later with classical trajectory
calculation. That is, isomerization and dissociation strongly
couple with each other in comparable time scales, and hence,
this evaporation dynamics is a typical example of multichannel
dissociation reaction of highly nonrigid molecules. On the other
hand, because of the high energy required by evaporation and
the high anharmonicity of the potential energy surface, the
reaction should be more or less stochastic. We are thus tempted
to apply a statistical reaction theory such as the transition state
theory or the RRKM theory for unimolecular dissociation.28

However, it is immediately noticed that the present evaporation
dynamics is not simple enough to allow their straightforward
application for the following reasons: (1) There is not a
transition state on the potential energy surface. (2) There are
many reaction coordinates that strongly couple with each other.
(3) Due to the frequent isomerization accompanying the
dissociation, the molecule is highly nonrigid like a liquid droplet,
which prohibits the separation of vibrational and rotational
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modes. (4) Under the nonseparability of vibration and rotation,
both the phase-space volume and the flux at a dividing surface,
which is a manifold dividing configurational space into reactant
and product subspaces, are hard to calculate. These items con-
stitute the central and most crucial task in the application of
any statistical reaction theory. In this paper, we attempt to
resolve these problems and thereby examine how statistical
theory can work for this problem. In doing so, we actually resort
to the original idea of phase-space theory.29-31 (Because the
work of Light31 contains important generalization of the original
phase-space theory (PST)29 so as to calculate the product
distribution under a constraint of symmetry, it is quite often
that the Light theory is just referred to as phase-space theory.
However, as phase-space theory the present paper refers back
to the rather primitive concept of Wigner.)

There are two very important previous studies, among others,
in the statistical study of evaporation dynamics of clusters. One
is due to Amar and his co-workers,32-34 and the other is by
Calvo and his co-workers.35-39 In particular, our work is an
extension of phase-space theory of Calvo35 so as to include the
nonempirical calculations of the flux and the relevant phase-
space volumes and the variational determination of the dividing
surface. Their works are based on the fundamental paper of
Chesnavich and Bower40 about energy and angular momentum
conservation incorporated into phase-space theory. (Incidentally,
see refs 41 and 42 for an extensive discussion on the resolution
of orbital angular momentum of relative motion of two
dissociating molecules within the scheme of statistical reaction
theory.) In phase-space theory, the relevant computation process
is generally factored into two parts: one is the evaluation of
the phase-space volume of a reactant, and the other is the flux
at some critical place like the transition state. For the part of
the phase-space volume, Weerasinghe and Amar32 have applied
the Nose´ dynamics sampling with the multiple histogram
method, and to determine the absolute magnitude of the density,
they further applied the adiabatic switching method.43,44 Simi-
larly, Calvo et al. have used the sophisticated version of the
Monte Carlo method,35 but only the relative values of the phase-
space volume were necessary for their studies. In calculating

the flux, Chesnavich and Bower approximate a molecular system
by a receding pair of rigid bodies like spherical top and linear
top, and they take a rigorous account of angular momenta by
assuming (or constructing) an empirical potential energy curve
in the form r-p, with r and p being, respectively, the mutual
distance between the two tops and a parameter predetermined
separately. This remodeling is particularly useful for an estimate
of the rotational distribution of the products. Both Amar’s and
Calvo’s groups have adopted this basic idea with individual
adaptation to their own frameworks. Although this approxima-
tion must be good for a reaction having a tight transition state,
its straightforward application to the dynamics of evaporation
from a nonrigid cluster would not be appropriate, in which the
coupling between vibration and rotation is strong. Besides,
theoretical consistency between the evaluations of the flux at
the dividing surface (or the transition state) and the phase-space
volume of a reactant is lost as soon as the remodeled poten-
tial function is introduced. Even with these most advanced
theoretical methods, it is still hard to carry out statistical
calculations in a systematic and nonempirical manner for the
present system.

We think that one of the largest obstacles to block the direct
application of statistical theory to nonrigid molecules lies in
the difficulty in ab initio estimate of the absolute value of
relevant phase-space volumes and the flux. We therefore study
a nonempiricalmethod to treat the present evaporation dynam-
ics, nonempirical in that (i) the phase-space volumes and the
flux are given on an equal footing and (ii) we do not refer to
any other quantities to calibrate or parametrize the values using
quantities obtained from experiments and molecular dynamics
calculations. We also demand ourselves that (iii) either a
harmonic approximation to the global potential energy surface
or the rigid body assumption is not used, and (iv) the potential
function is not rebuilt so as to reproduce the resultant reaction
rate. In this way, we calculate the absolute rate constant and
the distribution of released kinetic energy, and compare them
with classical trajectory calculations. It is true that statistical
theory is empirical in itself and may be further simplified so as
to get quick answers in a convenient fashion. However, only
after the unbiased numerical realization of a theory, the
underlying physical assumption behind the theory can be
verified. We hence conceive that these rather precise studies
on the methodology should facilitate deeper understanding of
the evaporation dynamics of nonrigid clusters.

This paper is organized as follows. Section II shortly describes
the system we treat. We show explicitly how evaporation
dynamics couples with isomerization. The microcanonical rate
constants of evaporation are prepared numerically with molec-
ular dynamics (MD) calculations to verify the statistical theory.
In section III we outline the standard version of phase-space
theory and its beautiful extension due to Calvo. We then extend
this theory to extract the distribution of released kinetic energy
after evaporation. Then we consider the practical problems in
the applications of the PST in section IV. In section V, the
statistical reaction rate and released kinetic energy distribution
are examined numerically by comparing with those obtained
with MD. The paper concludes in section VI.

II. Molecular Dynamics of Evaporation from a Nonrigid
Cluster

This section briefly deals with molecular dynamics of
evaporation from an Ar8-like cluster. We first confirm the
evaporation certainly couples with structural isomerization and
then estimate the microcanonical reaction (evaporation) rates.

Figure 1. (left) Eight local minima of Ar8. Their minimum energies
are -19.327 for capped pentagonal bipyramid (CPBP),-19.162 for
dodecadeltahedron (DOD),-18.645 forC2V-bicapped octahedron (C2V-
BOCT), -18.641 forD3d-bicapped octahedron (D3d-BOCT), -18.404
for stellated tetrahedron (STT),-18.341 for tricapped trigonal bipyra-
mid (TTBP), -18.323 forCs-polytetrahedral (Cs-PTT), and-18.306
for polytetrahedral (PTT). (right) Four locally stable structures of Ar7.
The minimum energies are-16.208 for pentagonal bipyramid (PBP),
-15.563 for capped octahedron (COCT),-15.248 for incomplete
stellated tetrahedron (IST), and-15.216 for bicapped trigonal bipyramid
(SKEW).
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These data will serve as references to examine the statistical
theory.

A. Ar 8-Like System.The Hamiltonian we use is

with the obvious notations for masses, momenta, and the
internuclear distances. The potential functionV(rij) we adopt is
the pairwise Morse potential defined as

By the following transformations

the Hamiltonian is rewritten in a dimensionless form such that

Thus the Morse potential has only one intrinsic parameterF0

that controls the topography of the potential energy surface. For
simplicity, the tildes are omitted in what follows. The values
of F0 for selected diatomic molecules, and the related quantities
about the time scales, internuclear distances, and energy scales
are found in ref 25 (note, however, the scaling parameters in
ref 25 are defined in a slightly different way from ours). In this
study,F0 is set to 6.0 throughout, which is usually chosen for
argon clusters and is similar to the Lennard-Jones potential in
topography.

Molecular dynamics for the present system is carried out as
follows. The initial configuration was chosen to be the structure
of the global minimum potential energy. From this point, each
trajectory was launched to a randomly selected direction under
a given energy subject to zero total linear and angular momenta.
The fourth-order symplectic method45 was used to integrate the
Hamilton canonical equations of motion, with a time step of
10-3 (in absolute units according to the dimensionless system
in eq 4). The total energy and momentum are conserved within
the tolerance of 10-7 after the running of 2× 106 steps, which
is equivalent to about 4.72 ns. A thousand trajectories are
generated to make an ensemble for each energy.

B. Stable Structures and Quenched Reaction Coordinates
for the Evaporation Process.The stable structures of the Ar8

cluster and their energies are summarized in Figure 1 (left
column). It has eight local minima, whose geometries are also
displayed. This figure also shows the energy of the lowest
transition state (about-18.867) that lies between two DOD
structures (permutation isomers). The stable structures of the
Ar7 cluster called PBP, COCT, IST, and SKEW are shown along
with their energies in Figure 1 (right column), which are
necessary to study the evaporation process from Ar8.

To energetically connect Ar8 and (Ar7 + Ar) on the potential
energy surfaces, we here define “quenched reaction coordinates”.
We begin with the asymptotic limit between an Ar atom and

Ar7 separated as far as 3.43, which is the distance from the
center of mass of Ar7. At this initial configuration, Ar7 may lie
at one of the four possible local minima. The total potential
energy goes down as Ar and Ar7 come closer to each other
with an infinitesimal speed (adiabatically), because this is simply
a downhill process having no transition state on the potential
energy surface. A path starting from this point is tracked with
use of the quenching technique,46 which eventually ends up with
one of the eight local minima of Ar8. This quenched path may
be regarded as a reaction coordinate connecting one of the local
minima of Ar7 and that of Ar8. Some of the similar paths thus
obtained are exhibited in Figure 2. Because each cluster has
several isomers, many quenched reaction coordinates connecting
the reactant and product isomers are possible. It is immediately
noticed that the correspondence between the isomers of Ar8 and
those of Ar7 is not one to one. This is because the quenched
paths depend on the relative orientation of the initial configu-
ration of (Ar7 + Ar). Note also that the correspondence is not
all-to-all either.

Obviously these quenched reaction coordinates are different
from the widely accepted reaction coordinates like the intrinsic
reaction coordinate (IRC)47 in that the former do not represent
the lowest energy path. To find the minimum energy quenched
reaction coordinate, we first find the minimum energy orienta-
tion between Ar7 at the bottom of the PBP basin and another
Ar atom at the distance of 3.43, and then resume quenching for
(Ar7 + Ar). When a stationary point on the potential is attained,
we proceed to the direction of an eigenvector having the smallest
(negative) eigenvalue of the locally Hessian matrix of the
potential function. We refer the thus obtained path to the
minimum energy quenched reaction coordinate. These reaction
coordinates will be used later to test the harmonic approximation
in statistical theory.
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Figure 2. Quenched reaction coordinates (QRC) that connect one of
the structures of Ar8 and one of the structures of Ar7. (a) The QRC’s
are projected onto the space of the potential energy and the distance of
two fragments. The thickest curve at the bottom represents the minimum
energy QRC. (b) shows the outline chart of QRC’s. Different types of
lines indicate connections to the different isomer of Ar7.
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C. Energetic Feature of “Phases”.We first summarize the
overall feature of the“phase-change” of Ar8 and Ar7 as a function
of the total energy.

1. “Solid” -“Liquid” Transitions and Nonrigid Clusters.In
a low-energy regime, the individual locally stable isomers
undergo local small vibration. Without isomerization, the cluster
can retain its shape as a “solid” state. As the total energy (E) is
raised, some isomerization begins to take place and eventually
a large amplitude dynamics due to frequent isomerization results.
In this frequent shape-changing stage, the cluster looks like a
liquid droplet with high viscosity. The so-called Lindemann
index gives a standard way to quantify the transition from the
solid-like state to the liquid-like state.1 The Lindemann index
(δ) measures the flexibility of a molecular structure around its
average shape.δ for Ar8 as a function of the total energy shows
three “phases” just as other typical cases: (1) the “solid-like”
phase with a small and slowly increasingδ below aboutE )
-17.5, which is called the “freezing” energy, (2) the “liquid-
like” phase with a large and very slowly increasingδ above
about E ) -16.0, called the “melting” energy, and (3) the
coexistence region between, where a steep rise ofδ is observed.
As usual, this behavior ofδ is regarded as a prototype of the
first-order phase transition. Ar8 also undergoes frequent struc-
tural transitions above the melting point. In this sense, this
molecule is highly nonrigid, and therefore its vibrational and
rotational motions can never be separated from each other. On
the contrary, an important kinematic force arises from this
nonseparable dynamics.13-16

2. EVaporation from Cluster.High above the melting energy,
evaporation from the cluster begins. Evaporating species are
monomer (atomic Ar), dimer (Ar2), and even larger small
clusters. However, the amount of the large species like Ar3 is
actually abundantly small, and therefore we consider only Ar
and Ar2 in molecular dynamics simulation. In Figure 3, the
overview of the energetics of the cluster dynamics is schemati-
cally summarized for Ar8 and Ar7. The lowest potential energy
of Ar7 serves as the minimum energies required for the
dissociation of (Ar7 + Ar). Note, however, the actual massive
reactions can take place only with the energies significantly
higher that these threshold values. This is because the excess
energy is distributed among many other vibrational modes
besides the mode of reaction coordinate.

It is natural to expect that evaporation from Ar8 should be
accompanied by the structural isomerization of Ar8, because
the evaporation stage is above the liquidlike state in energy.
Besides, Figure 3 suggests that Ar7 as a product of evaporation
may undergo structural isomerization even after the dissociation
is over. This is particularly the case for the evaporation of the
total energy higher thanE ) -12.0. In such a case it is not
meaningful to attempt to identify the individual isomers as a
product. For this reason, we do not consider a structure-to-
structure (isomer-to-isomer) reaction in this study.

D. Strong Coupling between Evaporation and Isomeriza-
tion. It is obvious that the dynamics of isomerization and
evaporation should couple with each other. An important issue
here is the time scale of this coupling. A hope is that an
evaporating species leaves so fast that the rest of the cluster
seems as though it was frozen during the evaporation process.
This situation, if any, may be called the sudden evaporation.
We hence survey how often the isomerization takes place during
an isomerization. To count the frequency of isomerization, we
first define a time, denoted astin, to be the last time at which
the radial component of the relative translational velocity of
two dissociating fragments becomes zero (see Figure 4). After

tin, dissociation proceeds with a uniformly positive velocity with
no return. In addition, we definetout as a time after which the
interaction potential between the fragments becomes as small
as-0.01. This situation is usually realized within the relative
distance shorter than 2.5 (9.4 Å). [As will be shown later, the

Figure 3. Overview of the energetics of the Morse clusters of Ar8

and Ar7. The two heavy lines represent the lowest energy of the isomer
of Ar8 and Ar7, respectively. The lowest energy of Ar7 gives a threshold
at which monomer evaporation from Ar8 can take place “theoretically”.
The two broken heavy lines indicate the lowest transition state energy
for the structural isomerization of individual clusters Ar8 and Ar7,
respectively.

Figure 4. Distance between two fragments Ar7 and Ar mutually
separating (solid curve, scaled to the left axis) and the radial component
of the relative translational velocityV between them (dashed curve,
scaled to the right axis) as a function of time. Taken from a sampled
trajectory for monomer evaporation, whose energy is-10.0. tin
represents the last time when the radial component ofV becomes zero.
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distance 2.5 is a little further away than the position of the
dividing surface at which to calculate the flux.]

We now study the dynamics of isomerization during the time
interval from tin to tout. Recall that beforetin Ar8 repeats
isomerization frequently because it is already in the “liquid-
like” phase. Incidentally, structural change is identified with
the so-called quenching technique.46 Figure 5 shows two
examples of structural transition duringtin andtout. Panel (a) is
for low energy and (b) is for a case of high energy. As can be
seen in (b), isomerization takes place a couple of times during
the relevant interval. That is, the dissociation and isomerization
are not independent but have a strong correlation, which cannot
be approximated by the sudden evaporation model. Indeed,
Table 1 shows quantitatively how frequently the individual
dissociation is accompanied by isomerization duringtin andtout.
This table also shows the average frequency of isomerization
in each dissociation event. These results clearly demonstrate
that structural isomerization actually occurs while a receding
species is on the way toward separation yet within the interaction
region. This is a crucial factor that any statistical theory should
take into account.

E. Energy-Resolved Rate Constants of Evaporations with
Molecular Dynamics. We here evaluate the reaction rates for
monomer and dimer evaporation. Prepare a microcanonical
ensemble of Ar8 clusters. Then they will decay to Ar7 or Ar6.
If there are a pair of atoms whose mutual distance is shorter
than 1.5 after a long time passes fromtin, we regarded them as
a diatomic molecule leaving Ar6 behind (dimer evaporation).
We neglect the further reaction, if any, for the products Ar7 or
Ar6 to proceed to the next products. Therefore we do not
consider successive reactions like Ar8f Ar7 + Ar f Ar6 +
2Ar. Let N8(t), N7(t), andN6(t) be the numbers of Ar8, Ar7, and
Ar6, respectively, at timet. Also, denotek87 andk86 as the rate
for Ar8 to change to Ar7 and Ar6, respectively. Then the rate
equations should be given as

and the solutions are readily obtained asN8(t) ) -N8(0) exp-
{-(k87 + k86)t}, N7(t) ) N8(0)k87/(k87 + k86)[1 - exp{-(k87 +
k86)t}], and N6(t) ) N8(0)k86/(k87 + k86)[1 - exp{-(k87 +
k86)t}].

Calculating the numberN8(t) in an ensemble of trajectories
is equivalent to measuring the lifetime distribution of Ar8 for
an individual trajectory. Here we usetin as the definition of
lifetime of Ar8. Likewise, we countN8(t), N7(t), andN6(t). With
the least-square fitting we have calculatedk87 + k86, k87/(k87 +
k86), andk86/(k87 + k86), which are sufficient to reproducek87

andk86. Note thatk87 andk86 can be obtained independently in
a single set of MD calculations. However, this paper compares
only k87 and will be summarized later in Figure 8 along with
the statistically givenk87.

To examine the dependence of the rate constants thus
evaluated on the preparation of the initial microcanonical
ensemble, we carried out the similar calculations with another
sampling as follows. (i) Prepare atomic positions randomly in
configuration space. This random “molecule” usually has a very
high energy. (ii) Quench this molecule adiabatically down to
the point at which the potential energy becomes equal to a total
energy aimed. Thus, the quenched molecule is therefore at a
turning point. (iii) Let it run with the zero initial momentum.
This sampling and the one described in section IIA constitute
the opposite extremes: In the former, the initial momentum is
zero (all the initial energy is concentrated to the potential
energy), whereas for the latter the initial potential energy is zero
(all the initial energy is concentrated to the kinetic energy).
Nevertheless, the rate constants evaluated with these ensembles
have shown a very good agreement. This is presumably because
the system has sufficiently a long induction time before
evaporation takes place, during which it undergoes isomerization
many times to visit the possible isomers in an ergodic manner.

III. Phase-Space Theory for Molecular Evaporation

We first outline the standard form of phase-space theory
(PST) along with its limitation in treating the cluster evaporation.
Then we proceed to the sophisticated version of phase-space
theory developed mainly by Calvo and his co-workers, with
which we study the dissociation dynamics of nonrigid molecules.

Figure 5. Structural change of the Ar8 cluster along a trajectory from
tin to tout. The vertical axis indicates the names of the possible isomers.
(a) For a case where the energy is as low asE ) -13.0. (b) displays
the case of high energy (E ) -10.0), in which three structural
transitions are observed. The inset in (b) shows the distance between
two fragments,rre, during the dissociation.

TABLE 1: Probability That the Individual Dissociation Is
Accompanied by Isomerization during tin and tout

a

energy probability [%] frequency

-5.0 89.2 3.07
-9.0 76.2 1.69

-13.0 11.0 1.33

a Also shown is the average frequency of isomerization in each
dissociation event. Three typical energies are sampled.

dN8(t)

dt
) -k87N8(t) - k86N8(t) (5)

dN7(t)

dt
) k87N8(t) (6)

dN6(t)

dt
) k86N8(t) (7)
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Finally, the statistical expression of kinetic energy distribution
due to evaporation is discussed.

A. Standard PST Scheme Assuming the Separation of
Rotational and Vibrational Motions. 1. Separation of Vibra-
tional and Rotational Modes.phase-space theory48 expresses
the microcanonical rate constant for dissociation reaction as the
ratio of a flux flowing out across a dividing surface to the
possible population inside this surface. More explicitly, it is

whereW(E,J) is the flux across the dividing surface toward a
product channel andΩ(E,J) is the volume of classical phase
space assigned to a reactant region (inside the dividing surface).
J collectively represents the conservatives arising from the
symmetry of a system such as the total angular momentum.
The theory is quite general as long as the background statistical
hypothesis is valid. Nevertheless, in actual applications, one
cannot help introducing further approximations depending on
a system under study. In particular, to apply this theory
successfully, it is very critical where to locate the dividing
surface, in addition to accurate estimates ofW(E,J) andΩ(E,J).

It is a standard practice to assume the separation of vibrational
and rotational modes in an application of PST to a “tight”
chemical reaction, in which the system does not undergo a large
structural change. Under this assumption,W(E,J) is represented
in a form of convolution of the density of states for rotational
and vibrational modes, e.g.,Wrot. andΩvib, respectively, in such
a way that

whereΩvib(E - E0 - Erot.) is the vibrational density of states
at a dividing surface,E0 is the potential energy of the dividing
surface,Erot.

/ (J) is the minimum energy required to reproduce
the angular momentumJ, and Wrot.(Erot.,J) is the number of
rotational-orbital states at the dividing surface with their energies
less than or equal toErot., which is the sum of translational and
rotational energies at the dividing surface. General expressions
for calculatingWrot.(Erot.,J) have been discussed in refs 40 and
48. Recall that rigid body rotation has to be assumed to estimate
Wrot.(Erot.,J) of eq 9 at a given rotational energy, which freezes
the degrees of freedom for the change of molecular “shapes”.

2. Phase-Space VolumeΩ(E,J) Assuming Harmonic Vibra-
tions.To attain a rough estimate of the phase-space volume for
a single basin problem as in a simple chemical reaction, it is a
usual practice that the true potential function is approximated
in terms of the harmonic oscillators.49 Although useful, this
approximation should be totally invalid in our multibasin
dynamics. In their studies of chaos, Reinhardt and his co-
workers43,44developed the so-called adiabatic switching method
to estimate the phase-space volume by adiabatically deforming
a potential function starting from an approximate reference
oscillator to the actual one at hand. Weerasinghe and Amar32

applied this method to argon clusters using the coupled harmonic
oscillators as a reference potential. The notion of adiabatic
switching is based on an observation by Hertz50 that the phase-
space volume enclosed by an isoenergetic shell (classical sum
of states) is an invariant with respect to adiabatic modification
of the Hamiltonian. However, the classical adiabatic theorem
essentially rests on the continuous and smooth (adiabatic) change
of the phase-space structure due to, for instance, ergodicity,51

and therefore the sudden change of the phase-space feature is

quite likely to break the theoretical ground.52,53 It is therefore
quite questionable for this theorem to be valid in the case where
the adiabatic switching changes the relevant dynamics from
chaos to regular motion, or vice versa, because the dimensional-
ity of phase-space for a completely chaotic motion to occupy
is 2n - 1, whereas that of the completely integrable counterpart
is n , where 2n is the dimension of phase-space. We hence need
a practical yet accurate method to estimate the phase-space
volumes for the present system.

B. Extended Phase-Space Theory of Calvo and
Labastie:35 Treatment ofDissociation Reaction for Nonrigid
Systems.The microcanonical rate constant for unimolecular
dissociation of an energyE, total linear momentumP, and total
angular momentumJ, is given by

whereW(E,P,J) is the flux across the dividing surface andΩ-
(E,P,J) is the initial phase-space volume to be estimated under
these conditions.54 For a cluster composed ofN identical atoms,
they are formally expressed as

and

whereDg is the degeneracy of the dissociative atom,j i is the
angular momentum of theith atom (j i ) r i × pi), rre is the
distance between the center of mass of two fragments, andrre

q

denotes the position of the dividing surface, which will be
specified later. The relevant integration over the momentum
space can be performed analytically without the separation of
vibrational and rotational motions, which gives rise to

and

k(E,J) )
W(E,J)

Ω(E,J)
(8)

W(E,J) ) ∫Erot
/ (J)

E-E0 dErot. Wrot.(Erot.,J) Ωvib(E-E0-Erot.)
(9)

k(E,P,J) )
W(E,P,J)
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(10)

Ω(E,P,J) ) ∫∏
i)1

N
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i)1

N
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N
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W(E,P,J) ) Dg∫∏
i)1

N

dr i dpi δ[H({r i},{pi}) - E] δ[∑
i)1

N

pi -

P] δ[∑
i)1

N

j i - J] δ[rre - rre
q ] r̆re (11)

Ω(E,P,J) )
(2π)s/2

Γ(s

2)N3/2

∫∏
i)1

N dr i

xdetIN({r i})
(E - V({r i}) -

P2

2N
- (J - Jc)

T
IN

-1({r i})

2
(J - Jc))(s-2)/2

(12)

W(E,P,J) )
Dg(2π)(s-1)/2

Γ(s + 1

2 )N3/2xmr

∫∏
i)1

N dr i

xdetIN({r i})

δ[rre - rre
q ]
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P2

2N
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T
IN
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(13)
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whereJc is the angular momentum of the center of mass moving
with respect to the space fixed frame. On the other hand,IN is
the 3× 3 tensor of inertia in the frame of the center of mass,
mr is the reduced mass of the two fragments, ands ) 3N - 6
is the internal degrees of freedom. These formulas are essentially
the same as those derived by Calvo and Labastie,35 although
the expression eq 13 is not seen in the literature. The details of
these integrals over the momentum space are described in the
appendix.

One can always setP ) 0 without loss of generality. In
addition, locating the origin of the space fixed frame at the center
of mass of a system, one can also choose asJc ) 0. Further, as
in the MD simulation in the preceding section, we study only
the case ofJ ) 0. The phase-space volumeΩ and flux W are
then represented as a convolution between the configuration
space term and the momentum space term, denoted by the
subscriptQ andP , respectively as

and

where

and

In these expressions,ΩQ(ε) denotes the volume of configuration
space belonging to a given potential energyε, ΩQ

q is the
configuration-space volume ofε in the dividing surface (actually
many-dimensional manifold),ΩP(E-ε) is the momentum space
volume for the kinetic energyE - ε, WP(E-ε) is the volume
of the momentum space accumulated up toE - ε (corresponding
to the number of states), and the term 1/8π2N! is a factor to
take account of the rotational and permutation symmetries of
the particles. Thus the final form of the rate expression is
reduced to

Because the momentum-space terms have been given analyti-
cally, the estimate ofk(E) amounts essentially to the calculations
of ΩQ

q (ε) and ΩQ(ε), which will be our main task in the next

section. We emphasize again that the above statistical expression
for dissociation rate is general enough to apply to a system that
undergoes a large change of molecular shape like our cluster
dynamics, for which separation of vibrational and rotational is
far from the reality.

Some remarks with respect to eqs 14-20 are in order. (1) If
the harmonic approximation is applied to the flux eq 14 and
the phase-space volume eq 15 as well, they are represented in
the well-known forms

whereνk
q (k ) 1, ..., s - 1) are the frequencies of the normal

modes orthogonal to the minimum energy quenched reaction
coordinate (see section IIB),Eq is the potential energy at the
dividing surface,νk (k ) 1, ..., s) are the frequencies of the
normal modes at the global minimum, andΓ(s) is the Gamma
function. The reaction rate is given as

These harmonic approximations are numerically realized in the
next section. (2) It has been found that the total phase-space
volume in the form of the convolution between the volumes in
momentum and configuration spaces, eq 15, can be used to
define a temperature in a microcanonical ensemble, called the
microcanonical temperature, which turns out to characterize the
isomerization dynamics of cluster M7 very well.11 (3) The
presence of the factor 1/xdetIN({r i}) in ΩQ(ε) and ΩQ

q (ε) ,
which is reduced to 1/IN in the case of linear molecules, was
previously established in terms of the principal momenta of
inertia by several authors.41,42,55,56In transforming from the 3N-
dimensional isotropic Euclidean space to the (3N - 6)-
dimensional internal molecular space (or molecular shape space),
the factor 1/xdetIN({r i}) disappears, and at a price the metric
term appears. Indeed, Teramoto and Takatsuka have explicitly
shown the effects of the metric of the molecular shape space.16

Besides, it has been revealed by Yanao and Takatsuka that this
metric (or the intrinsic curvature of the space) gives rise to an
important kinematic force that can strongly affect the shape-
changing dynamics of molecules.13-15

C. Kinetic Energy Release (KER).We next extend the
phase-space-volume formula of Calvo and Labastie35 for a
prediction of the final distribution of released kinetic energy.
We consider only the monomer evaporation (ArN f ArN-1 +
Ar). KER is defined as follows: The kinetic energy at the
dividing surface is divided as

wheremr, IL, and L represent the reduced mass, the inertial
tensor, and the orbital angular momentum of two fragments.
JN-1 andIN-1 represent the angular momentum and the inertial
tensor of the ArN-1 with respect to the center-of-mass of the

W(E) ) ∫0

E
dε ΩQ

q (ε) WP(E-ε) (14)

Ω(E) ) ∫0
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ArN-1. The kinetic energy released is the sum of the translational
energy and the rotational energies. The flux at the dividing
surface, eq 11, is also distributed according to the KER, so that
the (unnormalized) probability density for the KER is repre-
sented as

where we have setP ) J ) 0, and the center of mass is located
at the origin of the coordinate system. Integrating out the kinetic
part leads to

whereΩP;N-1 is the momentum-space density of states of the
vibrational motion of the ArN-1, which is explicitly written as

andWr is the momentum-space sum of states of the rotational
motion of the two fragments, that is

The derivation of eq 26 is shown in Appendix. Thus the
normalized probability density is represented as

with

Formulating these expressions seems to be rather straightfor-
ward, but applying them is highly nontrivial. Indeed, to the best
of our knowledge, KER in the literature has been calculated by
means of more conventional models and/or limited methods
imposing various assumptions. We shall carry out the full
nonempirical statistical calculations of KER in section V.

IV. Practices To Evaluate the Statistical Rates

We here study how the statistical theories above are material-
ized numerically. This aspect is crucial for the practical
applications of the theories.

A. Absolute Value of Phase-Space Volume for Many-
Dimensional Systems.The calculations of phase-space volume
and its related quantities always constitute a crucial key to
practical applications of statistical theories. For instance, in the
study of cluster isomerization dynamics, Seko and Takatsuka5,6

developed an efficient algorithm to generate random configura-
tions of a cluster in estimating the phase-space volume to be
assigned to individual potential basins (corresponding to the
isomers). However, only the calculation of the relative phase-
space volumes of individual basins was enough in those studies,
because the rate of isomerization was the central concern there.
However, the absolute values of phase-space volume is neces-
sary for the present evaporation dynamics.

The basic quantity to be determined here isΩQ(ε) (volume
in configuration space belonging to a potential energyε) in eq
16, because the volume in momentum space is already given
analytically. To estimateΩQ(ε) in eq 16, we set the origin of
the coordinate at the position of theNth atom in such a way
that

wherer i,N is the position vectorr i,N ) r i - rN. As usual, we
have no practical way to estimate this multidimensional (21 for
N ) 8) integral other than the Monte Carlo technique. We thus
generate a set of random numbers, e.g.,S, to represent many
configurations{r1,N, r2,N, ..., rN-1,N}. All the members ofSare
generated so that their given potential energies do not exceed
the maximum value of our concern (the maximum potential
value is set to 20.0). Also, the sampled points should lie inside
the dividing surface. With use of the sampling points generated
above,ΩQ(ε) is rewritten as

where theδ function is approximated in terms of a sharp pulse
function of the rectangular form (denoted asδnu), and∆ is the
measure (weighting factor) to perform the integration, which is
actually the function of a sampling setS.

However, because the measure is scarcely known in practice,
the standard way to eliminate∆ is to divide the number of
sampling points that satisfy the condition of the integrand to
the total number of sampling points generated (note that a
random sampling in the functional space is required in addition
to the random generation of the coordinate points{r i,N}). Indeed,
the number of those points that fall into the range of the nonzero
value of theδ function (actuallyδnu) in the entire sampling
space is very small practically, and therefore a large fluctuation
in this procedure makes it extremely hard to give a reasonable
estimate of the integral. Under this situation, in which the com-
putation of the functionV in the δ function is also time-con-
suming, the evaluation of the measure∆ is far more preferable
in the aspect of both accuracy and computational time to in-
creasing the size of Monte Carlo sampling to an astronomical
scale. We hence devise a method to figure out the value of∆
below.

In the spirit of the Monte Carlo method, we assume that∆ is
uniform (constant) over the entire space. We first consider the
following integral

which is similar to eq 30, yetωN is simply a direct product of
the integrals for three-dimensionalδ functions. Hence, it can
be analytically performed, resulting in
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where

This quantity is analytically given as

with R ) 1 + e for the Morse potential. On the other hand, one
can deliberately estimateωN(e1,...,eN-1) with the Monte Carlo
method using the same sampling setS as above, that is

where theδ function is also approximated in the same way as
above. Comparing the rigorous result of eq 33 and that estimated
with eq 36, one can determine∆. Because∆ thus obtained
numerically depends on the choice of (e1,...,eN-1) , it is averaged
over the (e1,...,eN-1)-sampling space. This∆ is brought back
into eq 31 to estimateΩQ(ε). To enhance the efficiency of the
above Monte Carlo calculations, the Wang-Landau method57

was applied with the weighting factor 1/xdetIN, which is fast
and convenient to estimate the configuration-space volume in
the wider range of configuration space.

Once the method to calculate the phase-space volume is
established, its extension to the calculation of the flux is almost
straightforward. We have thus applied the same technique to
measure the volume of the dividing surface ((3N - 7)-
dimensional configurational space). This provides us with a
consistent way of the calculations of the phase-space volume
of the reactantΩ(E) and the flux at the dividing surfaceW(E),
which could not be realized before in the study of cluster
evaporation dynamics. In Figure 6 we show the absolute value
of the flux W(E) and the phase-space volumeΩ(E). For
comparison, the results of the harmonic fluxWh(E) and the
harmonic phase-space volumeΩh(E) are also shown in Figure
6 with broken curves. The harmonic phase-space volumeΩh-
(E) and the harmonic fluxWh(E) were estimated at the global
minimum (CPBP) and on the minimum energy quenched
reaction coordinate which connects the CPBP and the PBP,
respectively (see eqs 21 and 22). As seen in Figure 6,Ω(E)
andΩh(E), andW(E) andWh(E) as well, in the very low-energy
regime agree with each other very well as they should be, which
verifies the present method of calculation. In the high-energy
region bothΩh(E) andWh(E) significantly deviate fromΩ(E),
respectively, to the order of 10.5 This is not surprising, though.

We have been using the Morse potential in this particular
study, the analytic functional form of which has been used to
calculateΩ(E) andW(E). However, we often face more general
potential functions that are given only numerically or as a fitted
function. Yet, their interatomic part (diatomic interaction) is
more or less similar to the Morse function. To calculate the
density of states for these general potentials, we suggest two
ways. The first one is to calculate eq 34 numerically for the
actual diatomic interaction, and the same procedure as the
present paper should be executed. The other one is to use the

adiabatic switching starting from the actual system under study
and ending to the Morse cluster.

B. Determination of the Dividing Surface. Another very
critical issue in the application of statistical rate theories is how
and where the dividing surface is set. Many studies have been
devoted to this problem, such as variational search for the best
transition state,30,58,59exploring the phase-space structure around
a saddle,60-62 and the formation of an effective potential basin
at the transition state due to the non-Euclidean property of
molecular internal space.13-15 The standard transition state
theory simply tells us to place a dividing surface at the transition
state. However, as far as the present reaction Ar8 f Ar7 + Ar
is concerned, there is no transition state on the potential energy
surface, as shown in Figure 2. The centrifugal force may
generate an effective barrier, and our theoretical treatment can
be applied to such effective transition states. Nevertheless, we
do not choose this option in this paper, because (i) we do not
consider the angular momentum resolution of the products in
the present stage, (ii) the position of the centrifugal barrier
depends on the kinetic energy of the relative motion, and (iii)
structural isomerization continues even in the area of the
centrifugal barrier and therefore the orbital angular momentum
continues to couple with the internal rotation and molecular
shape of the individual isomers.

Therefore, following the spirit of the variational transition
state theories, we set the dividing surface on the basis of the
minimum flux criterion;63 the dividing surface is to be set at
the position where the fluxW(E) takes the minimum. (Inciden-
tally, we have examined another variational criterion in which
the dividing surface is located at a point that gives the minimum
reaction ratek. It turns out numerically that these two criteria
have not produced significant differences in this system.) The
absolute flux was calculated at each position where the distance
between two fragments (rre) are 1.71, 1.83, 1.94, 2.06, 2.17,
2.29, 2.40, and 2.51, which was fitted in an expressiony )
exp(a3rre

3 + a2rre
2 + a1rre + a0) to deduce the minimum flux

point. This fitted curve is usually convex downward and
consequently has a minimum within the domain ofrre we
scanned. We carried out this procedure for the individual total
energies of our concern. Figure 7 shows an example of the flux
against the distance between two fragments (rre) at theE )

Figure 6. Absolute value of the phase-space volumeΩ(E) (thick solid
line) and the fluxW(E) (thin solid line). The broken and chained curves
representΩh(E) and Wh(E), respectively.Ωh(E) and Wh(E) were
estimated at the global minimum (CPBP) and on the minimum energy
quenched reaction coordinate, which connects the CPBP and the PBP,
respectively. The distance between two fragments, which is the position
of the dividing surface, was set to 2.17 for the calculation ofΩ(E),
W(E), andWh(E).

ΩQ
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-6.05. The minimum flux positions thus determined are used
to estimate the reaction rates.

V. Numerical Results for Monomer Evaporation

We are now at the point where the theories and numerical
algorithms should be examined numerically in a nonempirical
manner. We here consider only monomer evaporation in both
the statistical and the MD treatments.

A. Reaction Rates.With the statistical method developed
above, we have calculated the rate constants (denoted ask87

st )
for the monomer (atomic) evaporation from Ar8. The evapora-
tion rate constants are now compared withk87 (denoted ask87

MD)
obtained in section IIE with molecular dynamics, which are
shown altogether in Figure 8. Agreement between them is very
good.k87

MD/k87
st ) 1.30, 1.06, 1.08 at the total energyE ) -7.0,

-10.0, -13.0, respectively. In view of the use of the Monte
Carlo technique, we are not eligible to claim more. Nevertheless,

the present results demonstrate that the statistical theory can
work extremely well and the underlying physical assumption
to describe evaporation from a nonrigid molecule reflects the
true dynamics faithfully.

The accuracy of the statistical rate tends to be deteriorated
in the energy above ca.-8. Looking back at Figure 3, we notice
that dimer evaporation Ar8 f Ar6 + Ar2 may take place rather
massively at this energy. It is indeed the case.27 On the other
hand, the present variational calculation of the dividing surface
rests on the monomer evaporation. Therefore, the slight dis-
crepancy between the statistical and MD results in the high-
energy region suggests that the variational calculation should
be performed with respect to the total flux of Ar and Ar2

evaporations. This aspect requires further study, which is beyond
the scope of this paper.

We have also shown the rate constant obtained by the
harmonic approximation, namely, eq 23. The harmonic results
are consistently larger than the full statistical values by 10-
100 times. However, it is a nice feature that qualitative behavior
of the rate is mostly parallel with the full statistical values over
the wide range of energy. This finding is never trivial. On the
contrary, it is surprising, if we recall the energy dependence of
Ωh(E) andWh(E) in Figure 6. Both deviate individually more
and more from the full statistical counterparts, namely,Ω(E)
andW(E), asE is increased. But Figure 8 suggests that the errors
in Ωh(E) andWh(E) are balanced well enough to give such a
parallel behavior.

Finally, we numerically examine the effect of the tensor of
inertia, actually, in the form detIN({r i} ) of eqs 12 and 13.
Omitting the factorxdetIN in the calculation ofΩ(E) leads to
overestimation by a factor of about 102 in the present system.
Likewise a similar omission fromW(E) overestimates it.
However, again, the errors balance well to give reasonable
reaction rates in the wide range of energy, which are shown in
the inset of Figure 8 (the chained curve). Indeed, the rate thus
evaluated consistently overestimates the true statistical values
by the factor of only 1.4-1.8.

B. Distribution of Released Kinetic Energy.Figure 9 shows
two normalized probability distributions and molecular dynamics
counterparts for the distribution of released kinetic energy due
to the monomer evaporation from Ar8, where the energy was
set to-12.0 and-8.0. The conditions of this calculation are
similar to those specified in section IIA, except that 10 000
trajectories were used. The position of the dividing surface

Figure 7. Variational behavior of the flux as a function of the distance
from Ar7 (rre). Dots represent the absolute value of the fluxW(E) versus
the distance between Ar and Ar7. The broken curve is obtained with
the least-squares method. The cross represents the minimum flux point.
The total energy of the cluster is-6.05.

Figure 8. Rate constants versus the total energyE for the monomer
evaporation from Ar8. Dots are the results obtained from the classical
trajectory calculations, and smooth curves result from the present
statistical treatment. The ratio of the latter to the former is typically
about 1.1. The broken line represents the rate given by the harmonic
approximation. In the inset, a statistical rate that neglects the factor

xdetIN({r i}) (chain curve) is compared with the full statistical rate
(solid curve). The former consistently overestimates the true one by
the factor 1.4-1.8.

Figure 9. Probability distribution of the released kinetic energy after
the monomer evaporation atE ) -12.0 and-8.0. The chained and
broken curves represent the statistical results. Dots represent the
molecular dynamics values.
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estimated in the section IVB was also used as a place where
P(E,εK) was estimated. Here again the agreements between the
statistical and MD results are excellent. It thus turns out that
the present nonempirical statistical approach predicts quite well
such detailed dynamical information.

The kinetic energy distribution is one of the important
physical observables that can be measured experimentally.
Furthermore, it can be shown theoretically that one can argue
a deep relationship between the distribution of released kinetic
energy and the canonical temperature of clusters, which suggests
how to determine experimentally the temperature of isolated
clusters. This aspect will be reported elsewhere.64

VI. Concluding Remarks

We have studied the evaporation dynamics of an Ar8-like
Morse cluster on the basis of the phase-space-volume formula
of Calvo and Labastie.35 It has been numerically clarified that
the evaporation couples very strongly with isomerization
dynamics. In other words, the cluster keeps undergoing structural
change frequently in the course of dissociation. Statistical rate
theories that separate the vibration and rotation modes should
miss this very important feature of dynamics. We therefore have
studied a practical and nonempirical method to estimate the
classical density of states and the flux for a highly nonrigid
molecule having many flexible locally stable structures. There
are two basic keys in our theoretical treatment: (i) In the
calculation of the phase-space volumeΩ and the fluxW at the
dividing surface, we did not separate vibrational and rotational
modes by performing the relevant integrations in the full
momentum space analytically under the conservation of linear
and angular momenta. Thus the computation ofΩ and W is
essentially reduced to the calculation of the volume of config-
uration spaceΩQ(ε) in the reactant area and in the dividing
surface, respectively. (ii) We have devised a method to evaluate
the absolute magnitude ofΩQ(ε) within the Monte Carlo
technique by figuring out the integral measure.

The statistical treatment for the kinetic energy release, besides
the total reaction rate, has been developed in the present paper.
The rate constants and the kinetic energy release calculated by
the statistical method have successfully reproduced the MD
values quite accurately. We therefore think that the approach
developed here is a useful step toward the study of multichannel
chemical reactions of nonrigid molecules having many local
potential basins. Although we have concentrated on the absolute
rate constant and the kinetic energy release in this paper, there
are still other interesting problems in the multichannel chemical
reaction. The relationship between the angular momentum
distribution and the shape of a cluster is among them.

Finally, we stress that the present method developed here is
valid for the dimer evaporation too. Recently, much attention
has been paid to the dimer evaporation for various clusters in
the context of the branching ratio of the fragments in dissociation
processes.65-67 We will report the analysis of the dimer
evaporation in a future publication.27
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Appendix

Appendix A: Momentum Part Integrals. The phase-space
volume (proportional to the Thomas-Fermi classical density

of states), the flux (the sum of states at the dividing surface),
and the (unnormalized) probability density of the kinetic energy
release of our cluster are given in eqs 12, 13, and 26,
respectively. For this paper to be self-contained as much as
possible, we outline the phase-space volume formula by Calvo
and Labastie35 and our extension for the calculation of the flux
and kinetic energy release.

1. Phase-Space Volume.We begin with the standard
Hamiltonian

where the masses of all the particles are taken to be equal (for
more general cases, consult with ref 35). The phase-space
volume under a conservation of the linear and angular momenta
is represented as

We first define a 3N × 6 matrix B composed of 3× 3
antisymmetric matricesCi and the 3× 3 identity tensor1(3):

where (xi, yi, zi) ) r i are the Cartesian coordinates of atomi.
Then we have the following expression for the phase-space
volume

whereR̃ andP̃ are 3N vectors: P̃ ) (p1, ..., pN)T andR̃ ) (r1,
..., rN)T. b is a 6-vectorb ) (J, P). In the 3N-dimensional
momentum space, denoted asL, for each configurationR̃, the
equationBTP̃ ) 0 defines a vector subspaceL1 of dimension
3N - 6, which in turn uniquely defines an orthogonal compli-
mentL2. U, U1, andU2 are now chosen as an orthonormal basis
of L, L1, andL2, respectively, such that

U has the following properties

where1(3N) is the 3N × 3N identity tensor andV is a 6× 6
matrix (should not be confused with the potential function).

H ) ∑
i)1

N pi
2

2m
+ V({r i}) (A1)

Ω(E,P,J) ) ∫∏
i)1

N

dr i dpi δ[H({r i},{pi}) - E] δ[∑
i)1

N

pi -

P] δ[∑
i)1

N

j i - J] (A2)

B ) (C1 1(3)
l l
CN 1(3)) Ci ) ( 0 zi -yi

-zi 0 xi

yi -xi 0)

Ω(E,P,J) ) ∫dR̃ Λ(R̃,B,E,b) (A3)

Λ(R̃,B,E,b) ) ∫dP̃ δ[P̃TP̃
2m

- {E - V(R̃)}] δ[BTP̃ - b]
(A4)

U ) (U1, U2) ) (u1,1, u1,2, ...,u1,3N-6, u2,1, ...,u2,6)

UTU ) 1(3N) (A5)

BTU ) (0|V) (A6)
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With these new bases, the vectorP̃ can be expressed asX )
UTP̃ ) (X1, X2) with X1 ∈ L1 andX2 ∈ L2, andΛ becomes

We here change the variables fromX2 to X3 ) VX2 and
integrating onX3, andX1 leads to

whereR ) 2m{E - V(R̃)} - bT(VVT)-1b, s ) 3N - 6, and
|det U| is unity from eq A5. Furthermore one can show

and

whereM ) Nm is the total mass,IN is the inertia tensor of the
cluster with respect to the center-of-mass, andJc is the angular
momentum of the center-of-mass. Substituting eqs A9 and A10
into eq A8, we have

Bringing these back to the expression of the phase-space volume,
we finally have

By settingm ) 1, one obtains eqs 12.
2. Flux. Next the flux integral in the case of the monomer

evaporation is described. First,u1,1above should be chosen as

wherer re is a vector connecting an evaporating atom and the
daughter cluster, andrre is its length. In this frame, the relation
betweenrre andX1,1 is represented as

wheremr is the reduced massmr ) (N - 1)m/N. The flux is
represented by the following expression in terms of the same
quantities defined in the previous subsection

and

where theDg is the degeneracy of the dissociative atom and
the integration onX1,1 is performed in the positive range only.
We transform the variableX2 to X3 ) VX2 and integrate over
X3, which leads to

Integration overX1 and substituting eqs A9 and A10 into eq
A17 give rise to

After all, the flux in the case of the monomer evaporation can
be written as

By settingm ) 1 , we obtain eq 13.
3. Kinetic Energy Release (KER).The integral crucial for

the distribution of KER is discussed for the case of the vanishing
total linear and angular momenta. Because of the rotational
symmetry it is sufficient to carry out the integral with respect
to a frame where the position vector of the dissociative atom
(Nth atom) is represented as

Λ ) 2m∫∏
j)1

3N-6

dX1,j ∏
k)1

6

dX2,k δ[X1
TX1 + X2

TX2 - 2m{E -

V(R̃)}] δ[VX2 - b]|detU| (A7)

Λ ) 2m
|detU|
|detV|∫∏

j)1

3N-6

dX1,j δ[X1
TX1 - R]

)
(2mπ)s/2

Γ(s2)
|detU|
|detV|(E - V(R̃) - bT(VVT)-1

2m
b)(s-2)/2

(A8)

|detV| ) m-3M3/2xdetIN (A9)

bT(VVT)-1

2m
b ) P2

2M
+ (J - Jc)

T
IN

-1

2
(J - Jc) (A10)

Λ )
(2π)s/2m3N/2

Γ(s2)M3/2xdetIN

(E - V(R̃) - P2

2M
-

(J - Jc)
T
IN

-1

2
(J - Jc))(s-2)/2

(A11)

Ω(E,P,J) )
(2π)s/2m3N/2

Γ(s2)M3/2
∫ dR̃

xdetIN

(E - V(R̃) - P2

2M
-

(J - Jc)
T
IN

-1

2
(J - Jc))(s-2)/2

(A12)

u1,1 ) 1

rrex N
N-1

(r re,
-1

N - 1
r re,...,

-1
N - 1

r re)T
(A13)

r̆re ) 1

xmmr

X1,1 (A14)

W(E,P,J) ) Dg∫dR̃ δ[rre - rre
q ] λ(R̃,B,E,b) (A15)

λ(R̃,B,E,b) ) 2m∫∏
j)1

3N-6

dX1,j∏
k)1

6

dX2,k δ[X1
TX1 + X2

TX2 -

2m{E - V(R̃)}] δ[VX2 - b] r̆re (A16)

λ )
2

|detV|x N

N - 1
∫∏

j)1

3N-6

dX1,j δ[X1
TX1 - R]X1,1

(A17)

λ )
2

|detV|x N

N - 1
∫∏

j)2

3N-6

dX1,j ∫0

∞
dX1,1 δ[X1,1

2 +

∑
j)2

3N-6

X1,j
2 - R]X1,1

)
(2π)(s-1)/2m3N/2

Γ(s + 1
2 )M3/2xdetIN

(E - V(R) - P2

2M
-

(J - Jc)
T
IN

-1

2
(J - Jc))(s-1)/2

(A18)

W(E,P,J) )
Dg(2π)(s-1)/2m3N/2

Γ(s + 1
2 )M3/2xmr

∫dR̃
δ[rre - rre

q ]

xdetIN

(E - V(R̃) -

P2

2M
- (J - Jc)

T
IN

-1

2
(J - Jc))(s-1)/2

(A19)

rN ) (xN, yN, zN)T ) (N - 1
N

rre
q , 0, 0)T

(A20)
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In this frame the (unnormalized) probability density of the KER
is written as

and both the angular momentum of the daughter clusterJN-1

and the orbital angular momentum of the two fragmentsL
depend on the momentum of theNth atom,pN in such a way
that

Furthermore, the kinetic energy release is also written as a
function of thepN, that is

where r̆re ) pNx/mr, MN-1 is the mass of the daughter cluster,
p̃N is a 2-vectorp̃N ) (pNy, pNz)T , and ĨN-1 is a 2× 2 matrix

Substituting eq A23 into eq A21 and integrating out the kinetic
part of the daughter cluster (∏i)1

N-1 dpi) lead to

wheres̃ ) 3(N - 1) - 6. Then, we defineλ1, λ2, andŨN-1 as
eigenvalues of theĨN-1 and a matrix to diagonalizeĨN-1. ŨN-1

defines a coordinate transformation from (pNy, pNz) to (ê1, ê2) ,
which is applied to eq A25 as

where

The relation between the inertia tensor of the parent cluster and
the daughter cluster can be proved as

Substituting eq A27 into eq A26 leads to the final form

This can be written in the convolution form as

The configuration-space density of states in the dividing surface,
which is written as eq A30 in the specific frame mentioned

Pu(E,εK) )

∫∏
i)1

N-1

dr i dpi ∫dpN δ[∑
i)1

N-1

r i + (N - 1

N
rre

q , 0, 0)T] ×

δ[∑
i)1

N-1

pi + pN] δ[∑
i)1

N-1

j i + jN] r̆re δ[E - H({r i},{pi})] ×

δ[εK - (12mrr̆re
2 +

1

2
LTIL

-1L +
1

2
JN-1IN-1

-1JN-1)] (A21)

JN-1 ) - N
N - 1

jN L ) N
N - 1

jN

jN ) (0, -xNpNz, xNpNy)
T (A22)

1

2
mrr̆re

2 +
1

2
LTIL

-1L +
1

2
JN-1IN-1

-1JN-1

)

(∑
i)1

N-1

pi)
2

2MN-1

+
pN

2

2m
+

1

2( N

N - 1)2

jN
TIN-1

-1jN

)
pN

2

2mr
+

rre
q 2

2
p̃N

T ĨN-1p̃N (A23)

ĨN-1 ) ((IN-1
-1)zz -(IN-1

-1)zy

-(IN-1
-1)zy (IN-1

-1)yy
) (A24)

Pu(E,εK) ) ∫
∏
i)1

N-1

dr i

xdetIN-1

δ[∑
i)1

N-1

r i + (N - 1

N
rre

q ,0,0)T] ×

(2π)s̃/2m3(N-1)/2

Γ(s̃/2)MN-1
3/2

(E - V({r i}) - εK)(s̃-2)/2 ×

∫dpN

pNx

mr

δ[εK - (pN
2

2mr

+
rre

q 2

2
p̃N

T ĨN-1p̃N)] (A25)

Pu(E,εK) ) ∫
∏
i)1

N-1

dr i

xdetIN-1

δ[∑
i)1

N-1

r i + (N - 1

N
rre

q ,0,0)T] ×

(2π)s̃/2m3(N-1)/2

Γ(s̃/2)MN-1
3/2

(E - V({r i}) - εK)(s̃ -2)/2∫dpNx∫dê1

∫dê2

pNx

mr

δ[εK - {pN
2

2mr

+
rre

q 2

2
(λ1ê1

2 + λ2ê2
2)}]

) ∫
∏
i)1

N-1

dr i

xdetIN-1

δ[∑
i)1

N-1

r i + (N - 1

N
rre

q ,0,0)T] ×

(2π)s̃/2m3(N-1)/2

Γ(s̃/2)MN-1
3/2

(E - V({r i}) - εK)(s̃-2)/2
πεK

xΛ1Λ2
(A26)

Λl ) 1
2mr

+
rre

q 2

2
λl for l ) 1, 2

detIN ) (2mr)
2Λ1Λ2 detIN-1 (A27)

Pu(E,εK) )
m3N/2

mr
1/2M3/2

∫
∏
i)1

N-1

dr i

xdetIN

×

δ[∑
i)1

N-1

r i + (N - 1

N
rre

q ,0,0)T](2π)s̃/2

Γ(s̃/2)
×

(E - V({r i}) - εK)(s̃-2)/22πεK (A28)

Pu(E,εK) ) ∫0

E-εKdε ΩQ
q (ε) ΩP,N-1(E-ε-εK) Wr(εK) (A29)

ΩQ
q (ε) )

m3N/2

M3/2mr
1/2
∫∏

i)1

N-1

dr i

δ[ε - V({r i})]

xdetIN

×

δ[∑
i)1

N-1

r i + (N - 1

N
rre

q ,0,0)T] (A30)

ΩP,N-1(K) )
(2π)s̃/2

Γ(s̃/2)
K(s̃-2)/2 (A31)

Wr(εK) ) 2πεK (A32)
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above, can be written as eq 17 in the general Cartesian frame
that sets the origin to the center-of-mass of the parent cluster.
(Note that the masses of the particles were set to unity and the
rotational and permutation symmetries of the particles were
taken account in eq 17.)
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