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A high energy atomic cluster undergoing frequent structural isomerization behaves like a liquid droplet, from
which atoms or molecules can be emitted. Even after evaporation, the daughter cluster may still keep changing
its structure. We study the dynamics of such an evaporation process of atomic evaporation. To do so, we
develop a statistical rate theory for dissociation of highly nonrigid molecules and propose a simple method
to calculate thebsolutevalue of classical phase-space volume for a potential function that has many locally
stable basins. The statistical prediction of the final distribution of the released kinetic energy is also developed.
A direct application of the RiceRamspergerKassed-Marcus (RRKM) theory to this kind of multichannel
chemical reaction is prohibitively difficult, unless further modeling and/or assumptions are made. We carry
out a completely nonempirical statistical calculation for these dynamical quantities, in that nothing empirical
is introduced like remodeling (or reparametrization) of artificial potential energy functions or recalibration of
the phase-space volume referring to other “empirical” values such as those estimated with the molecular
dynamics method. The so-called dividing surface is determined variationally, at which the flux is calculated
in a consistent manner with the estimate of the phase-space volume in the initial state. Also, for the correct
treatment of a highly nonrigid cluster, the phase-space volume and flux are estimated without the separation
of vibrational and rotational motions. Both the microcanonical reaction rate and the final kinetic energy
distribution thus obtained have quite accurately reproduced the corresponding quantities given by molecular
dynamics calculations. This establishes the validity of the statistical arguments, which in turn brings about

the deeper physical insight about the evaporation dynamics.

I. Introduction In this paper we study the evaporation dynamics of an atomic

. ) ) . ) ) Morse cluster, e.g., Arwhich undergoes dissociation reactions
Dynamics of clusters is very interesting and important in that Arg — Ar7 + Ar. [A molecular evaporation Ar~ Arg + Ar,

it provides a characteristic opportunity to study the fundamental | be reported elsewherd] As studied extensively in the

featgres, concepts, ar)d l"?‘WS of chem|ca| react|9n dynamics. INjiterature cited above, Aundergoes frequent structural isomer-

particular, the isomerization dynamics pf at(_)m|c clusters and ization among eight locally stable isomers in an energy range

v?nd_dzr fWaaI?hclus_ters co_rrlpos?dfof |_de:1t|cal atoms catr_1 bethat is lower than evaporation can take place (see Figure 1).

studied from the view points of, for instance, cooperafive (Likewise, Ar, has four isomers.) Therefore, it is quite inter-

dynam!cs, the onsgt_of statlstlcal_ behavior (links between esting to see whether the structural transition may occur
dynamics and statistical mechanics), and quantum effects _ . . " .
simultaneously in the course of dissociation. This is really the

including permutation symmetry in the mesoscopic scale. Argon ase as will be explicitly shown later with classical trajector
clusters are among such objects that have been studied ver)? phicitly J y

intensively in the last two decades. All these features arise from calcullath?r.] Thar: Isth |sqmer|zat|on b?m:. d|ssom|a tion s(;rcr)]ngly
a single fact that its potential function has many local minima couple with each other in comparable ime scales, and hence,

to support locally stable molecular structures. Therefore, this 1S €vaporation dynamics is a typical example of multichannel
isomerization dynamics is a typical example of the so-called dissociation reaction of hlghly nonrigid molecules. On the_ other
many-valley (multiminimum) dynamics. Indeed, the isomeriza- hand, because of the high energy required by evaporation and
tion dynamics of argon clusters has been studied in various te high anharmonicity of the potential energy surface, the
aspects: microcanonical analog of the first-order seliguid reaction shoulq I:_)e more or less stochastic. We are thu_s_ tempted
phase transitions;* prototype of multichannel chemical apply a statistical reaction theory such as the transition state
reaction®-12 and kinematic effect of molecular internal theory or the RRKM theory for unimolecular dissociatfdn.
spacet3-16 semiclassical quantization of chaos in isomerization However, it is immediately noticed that the present evaporation
dynamicst’ They are sometimes studied with an emphasis on dynamics is not simple enough to allow their straightforward

chaos and regularity in Hamiltonian many body syst&ntd application for the following reasons: (1) There is not a
Also, the potential landscape for cluster dynamics have beentransition state on the potential energy surface. (2) There are
explored extensivel§—26 many reaction coordinates that strongly couple with each other.

(3) Due to the frequent isomerization accompanying the

* Corresponding author. E-mail: futofuji@mns2.c.u-tokyo.ac.jp. dissociation, the molecule is highly nonrigid like a liquid droplet,
T E-mail: kaztak@mns2.c.u-tokyo.ac.jp. which prohibits the separation of vibrational and rotational
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Energy Energy | gwest transition state the flux, Chesnavich and Bower approximate a molecular system
_1&00‘_ dEml—. by a receding pair of r_igid bodies like spherical top and linear
T A 2 ethehile = top, and they take a rigorous account of angular momenta by
B mﬂ 2 'j’:‘c*: o5 [ - ‘_ﬁ: assuming (or con_structlng) an e_mplrlcal pot_ent|al energy curve
| wem  TTEP CoPTT PTT s e in the formr~P, with r and p being, respectively, the mutual
1850 —STT P 1550 —@-8"® st SKEW  gistance between the two tops and a parameter predetermined
- _j:‘; _.@ [ %o separately. This remodeling is particularly useful for an estimate
[~ c-BOCT 0w-BOCT & of the rotational distribution of the products. Both Amar’s and
19.00— Lowest transtion state 1 ool COCT Calvo’s groups have adopted this basic idea with individual
= _s’;:’;p RepReeRRn = 2 adaptation to their own frameworks. Although this approxima-
e S PBP & tion must be good for a reaction having a tight transition state,
= e = its straightforward application to the dynamics of evaporation
-19.50— ¥ cpEP -16.50— L. . . .
from a nonrigid cluster would not be appropriate, in which the
A A coupling between vibration and rotation is strong. Besides,

Figure 1. (left) Eight local minima of As. Their minimum energies theoretical consistency between the evaluations of the flux at

are —19.327 for capped pentagonal bipyramid (CPBP}.9.162 for the dividing surface (or the transition state) and the phase-space
dodecadeltahedron (DOD},18.645 forC,,-bicapped octahedroiC,- volume of a reactant is lost as soon as the remodeled poten-
BOCT), —18.641 forDs4-bicapped octahedromg;-BOCT), —18.404 tial function is introduced. Even with these most advanced
for stellated tetrahedron (STT);18.341 for tricapped trigonal bipyra-  theoretical methods, it is still hard to carry out statistical

mid (TTBP), —18.323 forCspolytetrahedral ¢<PTT), and—18.306  cajcylations in a systematic and nonempirical manner for the
for polytetrahedral (PTT). (right) Four locally stable structures of Ar present system

The minimum energies are16.208 for pentagonal bipyramid (PBP),

—15.563 for capped octahedron (COCTH15.248 for incomplete We think that one of the largest obstacles to block the direct
stellated tetrahedron (IST), ardl5.216 for bicapped trigonal bipyramid ~ application of statistical theory to nonrigid molecules lies in
(SKEW). the difficulty in ab initio estimate of the absolute value of

relevant phase-space volumes and the flux. We therefore study

anonempiricalmethod to treat the present evaporation dynam-
modes. (4) Under the nonseparability of vibration and rotation, ics, nonempirical in that (i) the phase-space volumes and the
both the phase-space volume and the flux at a dividing surface,fjux are given on an equal footing and (i) we do not refer to
which is a manifold dividing configurational space into reactant any other quantities to calibrate or parametrize the values using
and product subspaces, are hard to calculate. These items conquantities obtained from experiments and molecular dynamics
stitute the central and most crucial task in the application of ¢gjculations. We also demand ourselves that (iii) either a
any statistical reaction theory. In this paper, we attempt to harmonic approximation to the global potential energy surface
resolve these problems and thereby examine how statisticalgy the rigid body assumption is not used, and (iv) the potential
theory can work for this problem. In doing so, we actually resort fynction is not rebuilt so as to reproduce the resultant reaction
to the original idea of phase-space the®ty?' (Because the  rate. In this way, we calculate the absolute rate constant and
work of Light*! contains important generalization of the original  the distribution of released kinetic energy, and compare them
phase-space theory (PST)so as to calculate the product with classical trajectory calculations. It is true that statistical
distribution under a constraint of symmetry, it is quite often theory is empirical in itself and may be further simplified so as
that the Light theory is just referred to as phase-space theory.to get quick answers in a convenient fashion. However, only
However, as phase-space theory the present paper refers backfter the unbiased numerical realization of a theory, the
to the rather primitive concept of Wigner.) underlying physical assumption behind the theory can be

There are two very important previous studies, among others, verified. We hence conceive that these rather precise studies

in the statistical Study of eVaporation dynamics of clusters. One on the methodo|ogy should facilitate deeper understanding of
is due to Amar and his co-worket&;** and the other is by  the evaporation dynamics of nonrigid clusters.
Calvo and his co-worker®* In particular, our work is an This paper is organized as follows. Section Il shortly describes
extenS|o.n. of phase-space theory of C&hap as to include the 1 system we treat. We show explicitly how evaporation
nonempirical calculations of the flux and the relevant phase- gynamics couples with isomerization. The microcanonical rate
space volumt_es and the variational determination of the dividing -gnstants of evaporation are prepared numerically with molec-
surface. Their works are based on the fundamental paper ofyar dynamics (MD) calculations to verify the statistical theory.
Chesnavich and Bow&rabout energy and angular momentum | section 11l we outline the standard version of phase-space
conservation incorporated into phase-space theory. (Incidentally,iheory and its beautiful extension due to Calvo. We then extend
see refs 41 and 42 for an extensive discussion on the resolutionps theory to extract the distribution of released kinetic energy
of orbital angular momentum of relative motion of tWO  afier evaporation. Then we consider the practical problems in
dissociating molecules within the scheme of statistical reaction ¢, applications of the PST in section IV. In section V, the
theory.) In phase-space theory, the relevant computation procesgasistical reaction rate and released kinetic energy distribution

is generally factored into two parts: one is the evalqation of are examined numerically by comparing with those obtained
the phase-space volume of a reactant, and the other is the flux,ith MD. The paper concludes in section VI.

at some critical place like the transition state. For the part of
the phase-space volume, Weerasinghe and Zrhawe applied

the Nosedynamics sampling with the multiple histogram
method, and to determine the absolute magnitude of the density,
they further applied the adiabatic switching metH&¢ Simi- This section briefly deals with molecular dynamics of
larly, Calvo et al. have used the sophisticated version of the evaporation from an Arlike cluster. We first confirm the
Monte Carlo method? but only the relative values of the phase- evaporation certainly couples with structural isomerization and
space volume were necessary for their studies. In calculatingthen estimate the microcanonical reaction (evaporation) rates.

[I. Molecular Dynamics of Evaporation from a Nonrigid
Cluster



Atomic Evaporation from Nonrigid Clusters J. Phys. Chem. A, Vol. 111, No. 8, 2007391

These data will serve as references to examine the statistical ~ -15 S S B T T ISKEW
theory. ' &l oo
A. Arg-Like System. The Hamiltonian we use is
PBP
m& [[(dx)2 [dy)|2 ([dz)?
2|: dt dt <]

with the obvious notations for masses, momenta, and the
internuclear distances. The potential functiéin;) we adopt is
the pairwise Morse potential defined as

Potential energy

V(rij) = 6[efzﬁ(rrro) _ zefﬁ(fij*fo)] )

_ _ 85042 12 16 18 2 22 24 26 28 3
By the following transformations (b) lre

PTT w— - —'—'____._-'—t_;"‘?_SKEW
- I’ij ~ X1 ~ yl ~ Zl R e _ IST
rlJ:r_ X1=r_ yl:r_ Z‘zr— Co-PTT e— y
0 0 0 0 TTEP — . COCT
Po= ﬂro H= % s= th (3) STT —
V mr D-BOCT

c2~-BOCT
DOD

the Hamiltonian is rewritten in a dimensionless form such that

2

- 1 8 d)~(1 2 dgll 2 dz CPBP
H=- — +{— +1—] |+
2; ds ds ds Figure 2. Quenched reaction coordinates (QRC) that connect one of
2oo(fi—1) oo —1) the structures of Arand one of the structures of Ar(a) The QRC'’s
(e~ PimY — 2e M) (4) are projected onto the space of the potential energy and the distance of
=] two fragments. The thickest curve at the bottom represents the minimum

energy QRC. (b) shows the outline chart of QRC's. Different types of

Thus the Morse potential has only one intrinsic parampger  lines indicate connections to the different isomer of.Ar
that controls the topography of the potential energy surface. For
simplicity, the tildes are omitted in what follows. The values Ar; separated as far as 3.43, which is the distance from the
of po for selected diatomic molecules, and the related quantities center of mass of Ar At this initial configuration, Ay may lie
about the time scales, internuclear distances, and energy scaleat one of the four possible local minima. The total potential
are found in ref 25 (note, however, the scaling parameters in energy goes down as Ar and Acome closer to each other
ref 25 are defined in a slightly different way from ours). In this  with an infinitesimal speed (adiabatically), because this is simply
study, po is set to 6.0 throughout, which is usually chosen for a downhill process having no transition state on the potential
argon clusters and is similar to the Lennard-Jones potential in energy surface. A path starting from this point is tracked with
topography. use of the quenching technigtfayhich eventually ends up with

Molecular dynamics for the present system is carried out as one of the eight local minima of Ar This quenched path may
follows. The initial configuration was chosen to be the structure be regarded as a reaction coordinate connecting one of the local
of the global minimum potential energy. From this point, each minima of Ar; and that of Ag. Some of the similar paths thus
trajectory was launched to a randomly selected direction underobtained are exhibited in Figure 2. Because each cluster has
a given energy subject to zero total linear and angular momenta.several isomers, many quenched reaction coordinates connecting
The fourth-order symplectic methBdvas used to integrate the  the reactant and product isomers are possible. It is immediately
Hamilton canonical equations of motion, with a time step of noticed that the correspondence between the isomers;aindir
1073 (in absolute units according to the dimensionless system those of Ar is not one to one. This is because the quenched
in eq 4). The total energy and momentum are conserved within paths depend on the relative orientation of the initial configu-
the tolerance of 10 after the running of 2« 1P steps, which ration of (Ar; + Ar). Note also that the correspondence is not
is equivalent to about 4.72 ns. A thousand trajectories are all-to-all either.
generated to make an ensemble for each energy. Obviously these quenched reaction coordinates are different

B. Stable Structures and Quenched Reaction Coordinates  from the widely accepted reaction coordinates like the intrinsic
for the Evaporation Process.The stable structures of the Ar  reaction coordinate (IR)in that the former do not represent
cluster and their energies are summarized in Figure 1 (left the lowest energy path. To find the minimum energy quenched
column). It has eight local minima, whose geometries are also reaction coordinate, we first find the minimum energy orienta-
displayed. This figure also shows the energy of the lowest tion between Ay at the bottom of the PBP basin and another
transition state (about18.867) that lies between two DOD  Ar atom at the distance of 3.43, and then resume quenching for
structures (permutation isomers). The stable structures of the(Ar; + Ar). When a stationary point on the potential is attained,
Ary cluster called PBP, COCT, IST, and SKEW are shown along we proceed to the direction of an eigenvector having the smallest
with their energies in Figure 1 (right column), which are (negative) eigenvalue of the locally Hessian matrix of the
necessary to study the evaporation process frog Ar potential function. We refer the thus obtained path to the

To energetically connect Aand (Ar, + Ar) on the potential minimum energy quenched reaction coordinate. These reaction
energy surfaces, we here define “quenched reaction coordinates”coordinates will be used later to test the harmonic approximation
We begin with the asymptotic limit between an Ar atom and in statistical theory.
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C. Energetic Feature of “Phases” We first summarize the Energy
overall feature of the“phase-change” ofg@nd Ar, as a function A
of the total energy. |

1. “Solid” —“Liquid” Transitions and Nonrigid Clustersin
a low-energy regime, the individual locally stable isomers
undergo local small vibration. Without isomerization, the cluster -8—
can retain its shape as a “solid” state. As the total endeys( B
raised, some isomerization begins to take place and eventually | Ar evapo.
a large amplitude dynamics due to frequent isomerization results. - A
In this frequent shape-changing stage, the cluster looks like a-10 —
liquid droplet with high viscosity. The so-called Lindemann — |
index gives a standard way to quantify the transition from the B
solid-like state to the liquid-like stafeThe Lindemann index
(6) measures the flexibility of a molecular structure around its -12
average shapé.for Arg as a function of the total energy shows
three “phases” just as other typical cases: (1) the “solid-like” — | \
phase with a small and slowly increasifigoelow aboute = B | coexistence
—17.5, which is called the “freezing” energy, (2) the “liquid- -14}—
like” phase with a large and very slowly increasidgabove — |
aboutE = —16.0, called the “melting” energy, and (3) the — | s -15.0
coexistence region between, where a steep rige®bbserved.
As usual, this behavior of is regarded as a prototype of the -16 |— < | solidlike e -16.2
first-order phase transition. Aalso undergoes frequent struc- — . )
tural transitions above the melting point. In this sense, this — coexistence |
molecule is highly nonrigid, and therefore its vibrational and B |
rotational motions can never be separated from each other. On-18 f—
the contrary, an important kinematic force arises from this —
nonseparable dynamié;16 — o -18.9 |

2. Evaporation from ClusterHigh above the melting energy, [ solidlike ™ -19.3
evaporation from the cluster begins. Evaporating species are-20— |
monomer (atomic Ar), dimer (A), and even larger small Ars | Ar7
clusters. However, the amount of the large Specie_s likgigr Figure 3. Overview of the energetics of the Morse clusters of Ar
actually abundantly small, and therefore we consider only Ar and Ar. The two heavy lines represent the lowest energy of the isomer

and Ar in molecular dynamics simulation. In Figure 3, the of Arg and Ar, respectively. The lowest energy of Agives a threshold
overview of the energetics of the cluster dynamics is schemati- at which monomer evaporation from £aan take place “theoretically”.

cally summarized for Arand Ar. The lowest potential energy  The two broken heavy lines indicate the lowest transition state energy
of Ar; serves as the minimum energies required for the for the _structural isomerization of individual clustersgfand Ar,
dissociation of (Af + Ar). Note, however, the actual massive ~eSPectively.

reactions can take place only with the energies significantly
higher that these threshold values. This is because the excess 3|
energy is distributed among many other vibrational modes
besides the mode of reaction coordinate.

It is natural to expect that evaporation fromgAshould be
accompanied by the structural isomerization of,Avecause
the evaporation stage is above the liquidlike state in energy. 1
Besides, Figure 3 suggests that As a product of evaporation =
may undergo structural isomerization even after the dissociation -
|
|
|

Ar2 evapo.

| liquidlike

— liquidlike
A

2

is over. This is particularly the case for the evaporation of the A A N g
total energy higher thaiE = —12.0. In such a case it is not FL Vb Vi
meaningful to attempt to identify the individual isomers as a = -1} %}
product. For this reason, we do not consider a structure-to- i |
structure (isomer-to-isomer) reaction in this study. ) . . . gtin .

D. Strong Coupling between Evaporation and Isomeriza- 26 27 28 t 30 31 32

tion. It IS obvious that the _dynamlcs of 'Som_er'zatlon _and Figure 4. Distance between two fragments Aand Ar mutually
evaporation should couple with each other. An important issue separating (solid curve, scaled to the left axis) and the radial component
here is the time scale of this coupling. A hope is that an of the relative translational velocity between them (dashed curve,
evaporating species leaves so fast that the rest of the clusteiscaled to the right axis) as a function of time. Taken from a sampled
seems as though it was frozen during the evaporation processtrajectory for monomer evaporation, whose energy—i%0.0. ti,

This situation, if any, may be called the sudden evaporation. represents the last time when the radial componenttecomes zero.
We hence survey how often the isomerization takes place duringtj,, dissociation proceeds with a uniformly positive velocity with
an isomerization. To count the frequency of isomerization, we no return. In addition, we defing,; as a time after which the
first define a time, denoted dg, to be the last time at which  interaction potential between the fragments becomes as small
the radial component of the relative translational velocity of as—0.01. This situation is usually realized within the relative
two dissociating fragments becomes zero (see Figure 4). After distance shorter than 2.5 (9.4 A). [As will be shown later, the
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Figure 5. Structural change of the Acluster along a trajectory from
tin to tou. The vertical axis indicates the names of the possible isomers.
(a) For a case where the energy is as lovEas —13.0. (b) displays
the case of high energyE(= —10.0), in which three structural
transitions are observed. The inset in (b) shows the distance betwee
two fragmentsr, during the dissociation.

TABLE 1: Probability That the Individual Dissociation Is
Accompanied by Isomerization duringty, and to2

energy probability [%] frequency
-5.0 89.2 3.07
-9.0 76.2 1.69

—-13.0 11.0 1.33

a Also shown is the average frequency of isomerization in each
dissociation event. Three typical energies are sampled.

distance 2.5 is a little further away than the position of the
dividing surface at which to calculate the flux.]

We now study the dynamics of isomerization during the time
interval from t, to to,+ Recall that beforet, Arg repeats
isomerization frequently because it is already in the “liquid-
like” phase. Incidentally, structural change is identified with
the so-called quenching technigtfe Figure 5 shows two
examples of structural transition duribgandt,,. Panel (a) is
for low energy and (b) is for a case of high energy. As can be
seen in (b), isomerization takes place a couple of times during
the relevant interval. That is, the dissociation and isomerization
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E. Energy-Resolved Rate Constants of Evaporations with
Molecular Dynamics. We here evaluate the reaction rates for
monomer and dimer evaporation. Prepare a microcanonical
ensemble of Ag clusters. Then they will decay to Aor Are.

If there are a pair of atoms whose mutual distance is shorter
than 1.5 after a long time passes frapwe regarded them as

a diatomic molecule leaving Arbehind (dimer evaporation).
We neglect the further reaction, if any, for the products ér

Arg to proceed to the next products. Therefore we do not
consider successive reactions likegAr Ar; + Ar — Arg +

2Ar. Let Ng(t), N(t), andNg(t) be the numbers of ArArz, and

Arg, respectively, at timé Also, denotekgy andkges as the rate

for Arg to change to Arand A, respectively. Then the rate
equations should be given as

dNg(t)
dt = —kg7Ng(t) — KgaNg(t) )
dNL(t
d—7t() = Kg7Ng(t) (6)
dNg(t
T — ) @

and the solutions are readily obtainedNggt) = —Ng(0) exp-

{ —(ks7 + keo)t}, N7(t) = Ng(0)kg7/(Ks7 + kge)[1 — exp{ —(ks7 +

Ilz:e;tH. and Ng(t) = Ng(O)kse/(ks7 + Ksg)[1 — exp{ —(ks7 +
st} ]

Calculating the numbeNg(t) in an ensemble of trajectories
is equivalent to measuring the lifetime distribution ofgAor
an individual trajectory. Here we udg as the definition of
lifetime of Arg. Likewise, we couniNg(t), N7(t), andNg(t). With

"the least-square fitting we have calculakgg+ Kgs, ke7/(Ks7 +

kss), andkse/(ks7 + ksg), which are sufficient to reprodudey
andkge. Note thatkg; andkgs can be obtained independently in

a single set of MD calculations. However, this paper compares
only kg7 and will be summarized later in Figure 8 along with
the statistically giverkgy.

To examine the dependence of the rate constants thus
evaluated on the preparation of the initial microcanonical
ensemble, we carried out the similar calculations with another
sampling as follows. (i) Prepare atomic positions randomly in
configuration space. This random “molecule” usually has a very
high energy. (ii) Quench this molecule adiabatically down to
the point at which the potential energy becomes equal to a total
energy aimed. Thus, the quenched molecule is therefore at a
turning point. (iii) Let it run with the zero initial momentum.
This sampling and the one described in section IIA constitute
the opposite extremes: In the former, the initial momentum is
zero (all the initial energy is concentrated to the potential
energy), whereas for the latter the initial potential energy is zero
(all the initial energy is concentrated to the kinetic energy).
Nevertheless, the rate constants evaluated with these ensembles
have shown a very good agreement. This is presumably because

are not independent but have a strong correlation, which cannottN€ System has sufficiently a long induction time before

be approximated by the sudden evaporation model. Indee
Table 1 shows quantitatively how frequently the individual
dissociation is accompanied by isomerization dutingndtoy:

This table also shows the average frequency of isomerization

d evaporation takes place, during which it undergoes isomerization

many times to visit the possible isomers in an ergodic manner.

Ill. Phase-Space Theory for Molecular Evaporation

in each dissociation event. These results clearly demonstrate We first outline the standard form of phase-space theory

that structural isomerization actually occurs while a receding
species is on the way toward separation yet within the interaction
region. This is a crucial factor that any statistical theory should
take into account.

(PST) along with its limitation in treating the cluster evaporation.
Then we proceed to the sophisticated version of phase-space
theory developed mainly by Calvo and his co-workers, with
which we study the dissociation dynamics of nonrigid molecules.
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Finally, the statistical expression of kinetic energy distribution quite likely to break the theoretical groub&3 It is therefore

due to evaporation is discussed. quite questionable for this theorem to be valid in the case where
A. Standard PST Scheme Assuming the Separation of the adiabatic switching changes the relevant dynamics from
Rotational and Vibrational Motions. 1. Separation of Vibra- chaos to regular motion, or vice versa, because the dimensional-

tional and Rotational Modegphase-space thedfyexpresses ity of phase-space for a completely chaotic motion to occupy

the microcanonical rate constant for dissociation reaction as theis 2n — 1, whereas that of the completely integrable counterpart

ratio of a flux flowing out across a dividing surface to the isn, where 2vis the dimension of phase-space. We hence need

possible population inside this surface. More explicitly, itis  a practical yet accurate method to estimate the phase-space
volumes for the present system.

W(E,J) ®) B. Extended Phase-Space Theory of Calvo and

Q(EJ) Labastie:3® Treatment oDissociation Reaction for Nonrigid
Systems.The microcanonical rate constant for unimolecular

whereW(E,J) is the flux across the dividing surface toward a  dissociation of an enerd, total linear momentur®, and total
product channel an@(E,J) is the volume of classical phase angular momentund, is given by

space assigned to a reactant region (inside the dividing surface).

J collectively represents the conservatives arising from the W(E,P,J)

symmetry of a system such as the total angular momentum. k(EPJ) = m (10)
The theory is quite general as long as the background statistical n

hypothesis is valid. Nevertheless, in actual applications, one whereW(E,P,J) is the flux across the dividing surface afi
cannot help introducing further approximations depending on (g p J) is the initial phase-space volume to be estimated under

a system under study. In particular, to apply this theory these condition8! For a cluster composed bfidentical atoms,
successfully, it is very critical where to locate the dividing they are formally expressed as

surface, in addition to accurate estimate$\WE,J) andQ2(E,J).
Itis a standard practice to assume the separation of vibrational N N

and rotational modes in an application of PST to a “tight” Q(E,P,J) = f dr; dp; S[H{r;} {p}) —EIO[ ) p; —

chemical reaction, in which the system does not undergo a large I= =

structural change. Under this assumptidfti,J) is represented N

in a form of convolution of the density of states for rotational PIol) ) —J]

and vibrational modes, e.gMo: andQyip, respectively, in such =

a way that

K(EJ) =

and
WEJ) = [T PdE W,

=) rot. r

ot.(Erot.i‘]) Qvib(E_ EO_ Erot.) N

N
®)  WEPJ) =Dy ] drdp o[H{r}{p}) —E1 o[ pi —

whereQ.in(E — Eo — Eit) is the vibrational density of states N
ata d|V|d|*ng su_rfaceEo is _the potential energy of the dividing PI O[S, — J] O[r,. — r:lrre (11)
surface,E;, (J) is the minimum energy required to reproduce =
the angular momenturd, and Wit (Erot,J) is the number of
rotational-orbital states at the dividing surface with their energies whereDy is the degeneracy of the dissociative atgnis the
less than or equal tB,, Which is the sum of translational and angular momentum of thgh atom {; = r; x pi), rre is the
rotational energies at the dividing surface. General expressionsdistance between the center of mass of two fragmentsr*,gnd
for calculatingWiot (Erot,J) have been discussed in refs 40 and denotes the position of the dividing surface, which will be
48. Recall that rigid body rotation has to be assumed to estimatespecified later. The relevant integration over the momentum
Wiot(Erot,J) Of €g 9 at a given rotational energy, which freezes space can be performed analytically without the separation of
the degrees of freedom for the change of molecular “shapes”. vibrational and rotational motions, which gives rise to

2. Phase-Space Volun§g(E,J) Assuming Harmonic Vibra-
tions.To attain a rough estimate of the phase-space volume for 27)%2 N dr,
a single basin problem as in a simple chemical reaction, it is a Q(E,P,J) = fl"
usual practice that the true potential function is approximated S =1 /
in terms of the harmonic oscillatof8.Although useful, this F(E)Nw detly({r})
approximation should be totally invalid in our multibasin .
dynamics. In their studies of chaos, Reinhardt and his co- p? Avodrid)
workerg344developed the so-called adiabatic switching method —— (-3 —
to estimate the phase-space volume by adiabatically deforming 2N 2
a potential function starting from an approximate reference
oscillator to the actual one at hand. Weerasinghe and Zmar
applied this method to argon clusters using the coupled harmonic

(E— V({r}) -

(s—2)12
u—JJ (12)

and

X . . ; \ D (27)¢ V"2 N dr.
oscillators as a reference potential. The notion of adiabatic W(E,P,J) = 9 f : ofr. — 1t
switching is based on an observation by H&that the phase- v S+ 1 D e Tl
space volume enclosed by an isoenergetic shell (classical sum 1“(_)|\|3’2\/n_1r Ty detl({r )
of states) is an invariant with respect to adiabatic modification 2
of the Hamiltonian. However, the classical adiabatic theorem 2 I

1 (s-1)2
{r})
essentially rests on the continuous and smooth (adiabatic) change E—Vv({r}) - i -@3-1J C)TN—'( J—J)
of the phase-space structure due to, for instance, ergo#icity, 2N 2

and therefore the sudden change of the phase-space feature is (13)
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whereJ. is the angular momentum of the center of mass moving section. We emphasize again that the above statistical expression
with respect to the space fixed frame. On the other hani, for dissociation rate is general enough to apply to a system that
the 3x 3 tensor of inertia in the frame of the center of mass, undergoes a large change of molecular shape like our cluster
my is the reduced mass of the two fragments, amed 3N — 6 dynamics, for which separation of vibrational and rotational is
is the internal degrees of freedom. These formulas are essentiallyfar from the reality.
the same as those derived by Calvo and Lab&3tdthough Some remarks with respect to eqs—12D are in order. (1) If
the expression eq 13 is not seen in the literature. The details ofthe harmonic approximation is applied to the flux eq 14 and
these integrals over the momentum space are described in thehe phase-space volume eq 15 as well, they are represented in
appendix. the well-known forms

One can always sd? = 0 without loss of generality. In
addition, locating the origin of the space fixed frame at the center (E— E*)S’fl
of mass of a system, one can also choos& as 0. Further, as W(B) = —— (21)
in the MD simulation in the preceding section, we study only = +
the case ofl = 0. The phase-space voluréeand flux W are F(S)ﬂvk
then represented as a convolution between the configuration -
space term and the momentum space term, denoted by the sl

subscriptQ andP , respectively as Q(E)=— s=3N-6 (22)
S
WE) = ﬁ,Ede QG (€) We(E—e) (14) F(S)[lvk

and wherevi (k=1, ...,s — 1) are the frequencies of the normal

modes orthogonal to the minimum energy quenched reaction
coordinate (see section IIBE* is the potential energy at the
dividing surface,vk (k = 1, ..., s) are the frequencies of the
where normal modes at the global minimum, ah¢k) is the Gamma
function. The reaction rate is given as
1 Ntoofe —V({r}l

— [ ———  (19) W,(E)
8N Ns/Zf D detl (r]) k(E) = Q:(E)

QE) = [ de Qgfe) Q(E—e) (15)

Qqfe) =

(23)

Jé[ These harmonic approximations are numerically realized in the
e = lrelOl€ — next section. (2) It has been found that the total phase-space
87°N! N3’2 I|jlx/de'[lN({r volume in the form of the convolution between the volumes in
V()] (17) momentum and conflgurathn spaces, eq 15, can be used to
: define a temperature in a microcanonical ensemble, called the
92 microcanonical temperature, which turns out to characterize the
(27) (E— )22 (18) isomerization dynamics of cluster Mvery well! (3) The
r(g) presence of the factor _&UeﬂN({ri}) in _QQ(e) and Qg(e) ,
which is reduced to 1j in the case of linear molecules, was
previously established in terms of the principal momenta of
inertia by several authofd:#25558n transforming from the 8-
(zﬂ)(sfl)IZ dimensional isotropic Euclidean space to theN(3- 6)-
(E— )12 (19) dimensional internal molecular space (or molecular shape space),

F(%) the factor 1{/det({r;}) disappears, and at a price the metric;
term appears. Indeed, Teramoto and Takatsuka have explicitly

In these expression&o(e) denotes the volume of configuration ~ Shown the effects of the metric of the molecular shape sface.
space belonging to a given potential enerngg is the Besides, it has been revealed by Yanao and Takatsuka that this

configuration-space volume efin the dividing surface (actually ~ Mewic (or the intrinsic curvature of the space) gives rise to an
many-dimensional manifoldi2s(E—¢) is the momentum space important klnemgnc force that ca?5 strongly affect the shape-
volume for the kinetic energf — ¢, We(E—¢) is the volume changlr_]g d_ynam|cs of mloleculé%i d th

of the momentum space accumulated u te € (corresponding C. Kinetic Energy Release (KER).We next extend the
to the number of states), and the terms#@8! is a factor to  Phase-space-volume formula of Calvo and Lab&stier a

take account of the rotational and permutation symmetries of predictiorj of the final distribution of reIea;ed kinetic energy.
the particles. Thus the final form of the rate expression is & consider only the monomer evaporationyAr Arn— +
reduced to Ar). KER is defined as follows: The kinetic energy at the

dividing surface is divided as

Qi) =

Qu(E—¢) =

and

Wo(E—€) =

f de QF(€) Wo(E—e)
f de Qq(€) Qp(E—e)

1 1 _ 1 _
(20) Emrrre2 + ELTlL L+ E‘J-ll\-lfll N-1 1JN—l (24)

wherem, I, andL represent the reduced mass, the inertial
Because the momentum-space terms have been given analytitensor, and the orbital angular momentum of two fragments.
cally, the estimate df(E) amounts essentially to the calculations  Jy_; andly-1 represent the angular momentum and the inertial
of Qg(e) and Qq(e), which will be our main task in the next  tensor of the A1 with respect to the center-of-mass of the
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Arn-1. The kinetic energy released is the sum of the translational  The basic quantity to be determined heredig(¢) (volume

energy and the rotational energies. The flux at the dividing in configuration space belonging to a potential energin eq

surface, eq 11, is also distributed according to the KER, so that 16, because the volume in momentum space is already given

the (unnormalized) probability density for the KER is repre- analytically. To estimat&q(¢) in eq 16, we set the origin of

sented as the coordinate at the position of tidth atom in such a way
that

L1 ole = V({rinh)]
-+ 1714 e d S
Qqle) 87°NI stzf fan B detIN({ri,N})(so

N
=

N N N
PuE.c) = Dy [ dp, 0L rd 0 pl O[3 1 OIE -

HA{r} {p})] Olr e — r?e]rreéleK - emnﬁ + %LTIL*L +

T . wherer;y is the position vector;ny = ri — ry. As usual, we
“Inealner Ineaf| (29) have no practical way to estimate this multidimensional (21 for
2 N = 8) integral other than the Monte Carlo technique. We thus
4 generate a set of random numbers, €53to represent many
configurationg[rin, ran, ..., rn-1n} . All the members oS are
generated so that their given potential energies do not exceed
the maximum value of our concern (the maximum potential
value is set to 20.0). Also, the sampled points should lie inside
the dividing surface. With use of the sampling points generated

. . above,Qq(¢) is rewritten as
where Qp.n—1 IS the momentum-space density of states of the

where we have s&® = J = 0, and the center of mass is locate
at the origin of the coordinate system. Integrating out the kinetic
part leads to

E*GK

PUEed = [, “de Qife) Qpp1(E—e—€) Wile) (26)

vibrational motion of the Ag-1, which is explicitly written as 1 O V{ri ) — €
i Qq(€) = : A (31)
2 g2 B Q 2 -
QP;Nfl(x) = %X(S_Z)/Z S=3(N—1)—6 8r°NIs Y detly

) ) where thed function is approximated in terms of a sharp pulse
and_Wr is the momentum-space sum of states of the rotational ¢,ction of the rectangular form (denoted&g), andA is the
motion of the two fragments, that is measure (weighting factor) to perform the integration, which is

W,(X) = 272 27) actually the function of a samplmg S8t . '

r However, because the measure is scarcely known in practice,
the standard way to eliminat& is to divide the number of
sampling points that satisfy the condition of the integrand to
the total number of sampling points generated (note that a

P(E,¢,) = P,(E.e)W(E) (28) random sampling in the functional space is required in addition
to the random generation of the coordinate pdinis}). Indeed,

with the number of those points that fall into the range of the nonzero
value of thed function (actuallydn,) in the entire sampling

_ space is very small practically, and therefore a large fluctuation

W(E) fdeK PEew (29) in this procedure makes it extremely hard to give a reasonable

Formulating these expressions seems to be rather straightfor-es'fimate of the integr.al. Under this situgtiorj, in whigh the com-
ward, but applying them is highly nontrivial. Indeed, to the best Putation of the functionV in the 6 function is also time-con-
of our knowledge, KER in the literature has been calculated by SUMing, the evaluation of the measures far more preferable

means of more conventional models and/or limited methods N the aspect of both accuracy and computational time to in-
imposing various assumptions. We shall carry out the full creasing the size of Monte Carlo samplmg to an astronomical
nonempirical statistical calculations of KER in section V. scale. We hence devise a method to figure out the valut of

below.
IV. Practices To Evaluate the Statistical Rates In the spirit of the Monte Carlo method, we assume tha

o . . uniform (constant) over the entire space. We first consider the
We here study how the statistical theories above are mate”a"following integral

ized numerically. This aspect is crucial for the practical
applications of the theories. N _
pX. Absolute Value of Phase-Space Volume for Many- @ (8- Ey-1) = fdrlv’\‘ medrygn OV ) =
Dimensional SystemsThe calculations of phase-space volume e =+ O[V(ry_1pn) — &4l (32)
and its related quantities always constitute a crucial key to
practical applications of statistical theories. For instance, in the which is similar to eq 30, yebN is simply a direct product of
study of cluster isomerization dynamics, Seko and Takatfuka the integrals for three-dimensionalfunctions. Hence, it can
developed an efficient algorithm to generate random configura- be analytically performed, resulting in
tions of a cluster in estimating the phase-space volume to be
assigned to individual potential basins (corresponding to the N N
isomers). However, only the calculation of the relative phase- w (8, By-1) = I_lfdri,N O[V(rin) — €l
space volumes of individual basins was enough in those studies, =
because the rate of isomerization was the central concern there. N-1
However, the absolute values of phase-space volume is neces- = ”QQ(Z)(ei) (33)
sary for the present evaporation dynamics. =

The derivation of eq 26 is shown in Appendix. Thus the
normalized probability density is represented as
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where 10
Q%) = [dxdydzo[e— V(xy.2)] (34) — °F
w
This quantity is analytically given as E or
_ S 5|
Q@ = 1|20 |n(1 + J&) + S
2pgo (o — 1) o \1 — Vo = ol
%m(l_*/a) (1 — o) + 2va — 2% 1n(1 — o) + S
Po + Vo Po >
N 2 o
XN = Vo) + In¥(1 + Voo | (35)
Po 25 .
20 -18 -16 14 12 10 -8 6 4 2 0
with oo = 1 + efor the Morse potential. On the other hand, one E
can deliberately estimaigN(ey,...ey-1) with the Monte Carlo Figure 6. Absolute value of the phase-space volu®(&) (thick solid
method using the same sampling Sais above, that is line) and the fluAW(E) (thin solid line). The broken and chained curves
representQn(E) and WH(E), respectively.Qn(E) and WL(E) were
N-1 estimated at the global minimum (CPBP) and on the minimum energy

N . . ;
oNe,...en ) = o IV(r ) —eD)A 36 quenched reaction coordinate, which connects the CPBP and the PBP,
@y y-2) S;( _ nd V( "N) &l) (36) respectively. The distance between two fragments, which is the position

of the dividing surface, was set to 2.17 for the calculatiortdE),

where thed function is also approximated in the same way as W(E), andWh(E)-

above. Comparing the rigorous result of eq 33 and that estimatedadiabatic switching starting from the actual system under study
with eq 36, one can determingd. BecauseA thus obtained and ending to the Morse cluster.
numerically depends on the choice ef,(..en-1) , it is averaged B. Determination of the Dividing Surface. Another very
over the €,...en-1)-sampling space. Thia is brought back critical issue in the application of statistical rate theories is how
into eq 31 to estimat@q(e). To enhance the efficiency of the  and where the dividing surface is set. Many studies have been
above Monte Carlo calculations, the Warigandau method devoted to this problem, such as variational search for the best
was applied with the weighting factor.itietl n» Which is fast transition staté%58:5%xploring the phase-space structure around
and convenient to estimate the configuration-space volume in a saddl&?-52 and the formation of an effective potential basin
the wider range of configuration space. at the transition state due to the non-Euclidean property of
Once the method to calculate the phase-space volume ismolecular internal spacdé:’®> The standard transition state
established, its extension to the calculation of the flux is almost theory simply tells us to place a dividing surface at the transition
straightforward. We have thus applied the same technique tostate. However, as far as the present reactigjrARAr; + Ar
measure the volume of the dividing surface N(3- 7)- is concerned, there is no transition state on the potential energy
dimensional configurational space). This provides us with a surface, as shown in Figure 2. The centrifugal force may
consistent way of the calculations of the phase-space volumegenerate an effective barrier, and our theoretical treatment can
of the reactanf2(E) and the flux at the dividing surfad&(E), be applied to such effective transition states. Nevertheless, we
which could not be realized before in the study of cluster do not choose this option in this paper, because (i) we do not
evaporation dynamics. In Figure 6 we show the absolute value consider the angular momentum resolution of the products in
of the flux W(E) and the phase-space volun§e(E). For the present stage, (ii) the position of the centrifugal barrier
comparison, the results of the harmonic flwy(E) and the depends on the kinetic energy of the relative motion, and (iii)
harmonic phase-space volurg(E) are also shown in Figure  structural isomerization continues even in the area of the
6 with broken curves. The harmonic phase-space volxe centrifugal barrier and therefore the orbital angular momentum
(E) and the harmonic fluxWx(E) were estimated at the global continues to couple with the internal rotation and molecular
minimum (CPBP) and on the minimum energy quenched shape of the individual isomers.
reaction coordinate which connects the CPBP and the PBP, Therefore, following the spirit of the variational transition
respectively (see egs 21 and 22). As seen in Figur@(g) state theories, we set the dividing surface on the basis of the
andQn(E), andW(E) andWH(E) as well, in the very low-energy ~ minimum flux criterion®3 the dividing surface is to be set at
regime agree with each other very well as they should be, which the position where the flu¥W(E) takes the minimum. (Inciden-
verifies the present method of calculation. In the high-energy tally, we have examined another variational criterion in which
region bothQ(E) andW(E) significantly deviate fromQ(E), the dividing surface is located at a point that gives the minimum
respectively, to the order of FThis is not surprising, though.  reaction ratek. It turns out numerically that these two criteria
We have been using the Morse potential in this particular have not produced significant differences in this system.) The
study, the analytic functional form of which has been used to absolute flux was calculated at each position where the distance
calculateQ(E) andW(E). However, we often face more general between two fragments ) are 1.71, 1.83, 1.94, 2.06, 2.17,
potential functions that are given only numerically or as a fitted 2.29, 2.40, and 2.51, which was fitted in an expression
function. Yet, their interatomic part (diatomic interaction) is exp(@afre® + @ofre® + aufre + ao) to deduce the minimum flux
more or less similar to the Morse function. To calculate the point. This fitted curve is usually convex downward and
density of states for these general potentials, we suggest twoconsequently has a minimum within the domain rgf we
ways. The first one is to calculate eq 34 numerically for the scanned. We carried out this procedure for the individual total
actual diatomic interaction, and the same procedure as theenergies of our concern. Figure 7 shows an example of the flux
present paper should be executed. The other one is to use thagainst the distance between two fragmemtg at theE =
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Figure 7. Variational behavior of the flux as a function of the distance F19ure 9. Probability distribution of the released kinetic energy after
from Ar7 (rie). Dots represent the absolute value of the f\ME) versus the monomer evaporation & = —12.0 and—8.0. The chained and

the distance between Ar and AiThe broken curve is obtained with broken curves represent the statistical results. Dots represent the
the least-squares method. The cross represents the minimum flux pointM0lecular dynamics values.

The total energy of the cluster is6.05.
the present results demonstrate that the statistical theory can

1 ; ' work extremely well and the underlying physical assumption
ol e to describe evaporation from a nonrigid molecule reflects the
--"7 true dynamics faithfully.

The accuracy of the statistical rate tends to be deteriorated
in the energy above ca.8. Looking back at Figure 3, we notice
that dimer evaporation Ar— Arg + Ar, may take place rather
massively at this energy. It is indeed the c&s@n the other
hand, the present variational calculation of the dividing surface
rests on the monomer evaporation. Therefore, the slight dis-
crepancy between the statistical and MD results in the high-
energy region suggests that the variational calculation should
be performed with respect to the total flux of Ar and,Ar
1 evaporations. This aspect requires further study, which is beyond

-7 _ the scope of this paper.
4 2 0 3 6 We have also shown the rate constant obtained by the
E harmonic approximation, namely, eq 23. The harmonic results
Figure 8. Rate constants versus the total enefgfor the monomer  are consistently larger than the full statistical values by 10
ev:_:\poration from A;r Dots are the results obtained from the classical 100 times. However, it is a nice feature that qualitative behavior
trajectory calculations, and smooth curves result from the present .t yhe rate is mostly parallel with the full statistical values over

statistical treatment. The ratio of the latter to the former is typically the wide range of energy. This finding is never trivial. On the

about 1.1. The broken line represents the rate given by the harmonic < - /
approximation. In the inset, a statistical rate that neglects the factor contrary, it is surprising, if we recall the energy dependence of

\/det ({r}) (chain curve) is compared with the full statistical rate Qn(E) andWhH(E) in Figure 6. Both deviate individually more
(solid curve). The former consistently overestimates the true one by and more from the full statistical counterparts, namé&}F)
the factor 1.4-1.8. andW(E), asE is increased. But Figure 8 suggests that the errors
in Qp(E) and Wi(E) are balanced well enough to give such a
—6.05. The minimum flux positions thus determined are used parallel behavior.
to estimate the reaction rates. Finally, we numerically examine the effect of the tensor of
inertia, actually, in the form delty({ri} ) of eqs 12 and 13.
V. Numerical Results for Monomer Evaporation Omitting the factor,/det in the calculation o€2(E) leads to
. ) . overestimation by a factor of about2id the present system.
We are now at the point where the theories and numerical | jxewise a similar omission fromW(E) overestimates it.
algorithms should be e>_<amined numerically in a nor_1em_pirica| However, again, the errors balance well to give reasonable
manner. We here consider only monomer evaporation in both reaction rates in the wide range of energy, which are shown in
the statistical and the MD treatments. the inset of Figure 8 (the chained curve). Indeed, the rate thus
A. Reaction Rates.With the statistical method developed evaluated consistently overestimates the true statistical values
above, we have calculated the rate constants (denotég})as by the factor of only 1.41.8.
for the monomer (atomic) evaporation fromgAlThe evapora- B. Distribution of Released Kinetic Energy.Figure 9 shows
tion rate constants are now compared viigh(denoted agyr) two normalized probability distributions and molecular dynamics
obtained in section IIE with molecular dynamics, which are counterparts for the distribution of released kinetic energy due
shown altogether in Figure 8. Agreement between them is very to the monomer evaporation from Awhere the energy was
good.kyr /ks, = 1.30, 1.06, 1.08 at the total energy= —7.0, set to—12.0 and—8.0. The conditions of this calculation are
—10.0, —13.0, respectively. In view of the use of the Monte similar to those specified in section IIA, except that 10 000
Carlo technique, we are not eligible to claim more. Nevertheless, trajectories were used. The position of the dividing surface

logo ker(E) ]

logyol ker(E) ]
)

'
(4]




Atomic Evaporation from Nonrigid Clusters J. Phys. Chem. A, Vol. 111, No. 8, 200¥399

estimated in the section IVB was also used as a place whereof states), the flux (the sum of states at the dividing surface),

P(E,ex) was estimated. Here again the agreements between theand the (unnormalized) probability density of the kinetic energy

statistical and MD results are excellent. It thus turns out that release of our cluster are given in eqs 12, 13, and 26,

the present nonempirical statistical approach predicts quite well respectively. For this paper to be self-contained as much as

such detailed dynamical information. possible, we outline the phase-space volume formula by Calvo
The kinetic energy distribution is one of the important and Labasti® and our extension for the calculation of the flux

physical observables that can be measured experimentally.and kinetic energy release.

Furthermore, it can be shown theoretically that one can argue 1. Phase-Space Voluméde begin with the standard

a deep relationship between the distribution of released kinetic Hamiltonian

energy and the canonical temperature of clusters, which suggests

how to determine experimentally the temperature of isolated N piz

clusters. This aspect will be reported elsewlfére. H=S—+V({r}) (A1)

VI. Concluding Remarks

We have studied the evaporation dynamics of aglike where the masses of all the particles are taken to be equal (for
Morse cluster on the basis of the phase-space-volume formulamore general cases, consult with ref 35). The phase-space
of Calvo and Labasti& It has been numerically clarified that  volume under a conservation of the linear and angular momenta
the evaporation couples very strongly with isomerization is represented as
dynamics. In other words, the cluster keeps undergoing structural
change frequently in the course of dissociation. Statistical rate N N
theories that separate the vibration and rotation modes shouldQ(E,P,J) = f dr, dp; S[H{r} {p}) —El O[S p, —
miss this very important feature of dynamics. We therefore have i= =
studied a practical and nonempirical method to estimate the N
classical density of states and the flux for a highly nonrigid Plol) ] —J] (A2)
molecule having many flexible locally stable structures. There =
are two basic keys in our theoretical treatment: (i) In the
calculation of the phase-space volu®eand the fluxW at the We first define a 8! x 6 matrix B composed of 3x 3
dividing surface, we did not separate vibrational and rotational antisymmetric matrice€; and the 3x 3 identity tensorl(3):
modes by performing the relevant integrations in the full
momentum space analytically under the conservation of linear C, 13) 0 z -
and angular momenta. Thus the computatioroaind W is I P |- '
essentially reduced to the calculation of the volume of config- B=[ C=|"7a2 0 X%
uration spaceQq(e) in the reactant area and in the dividing Cn 1(3) Yi =% 0
surface, respectively. (i) We have devised a method to evaluate
the absolute magnitude dRq(¢) within the Monte Carlo ] ) )
technique by figuring out the integral measure. where §, yi, z) = r; are the Cartesian coordinates of atom

The statistical treatment for the kinetic energy release, besidesThen we have the following expression for the phase-space
the total reaction rate, has been developed in the present paperolume
The rate constants and the kinetic energy release calculated by
the statistical method have successfully reproduced the MD Q(E,PJ) = fdﬁ A(R,B,E,b) (A3)
values quite accurately. We therefore think that the approach
developed here is a useful step toward the study of multichannel  _ . [pp _ .
chemical reactions of nonrigid molecules having many local A(R,B,Eb) = ['dP 6 Sm ~{EV(R)}| o[B'P —b]
potential basins. Although we have concentrated on the absolute (A4)
rate constant and the kinetic energy release in this paper, there
are still other interesting problems in the multichannel chemical \yhereR andP are 3N vectors: P = (py, ..., pn)" andR = (14,
reaction. The relationship between the angular momentum 7T b is a 6-vectorb = (J, P). In the 3-dimensional

Finally, we stress that the present method developed here isequationB™ = 0 defines a vector subspagg of dimension
valid for the dimer evaporation too. Recently, much attention 3N — 6, which in turn uniquely defines an orthogonal compli-

haS been pa|d to the dlmel’ evaporation for Val’iOUS C|US'[erS in mentZé U, Ull andLl2 are now chosen as an orthonormal basis
the context of the branching ratio of the fragments in dissociation of /~ /7, and. /3, respectively, such that

processe& 67 We will report the analysis of the dimer

evaporation in a future publicaticn.

P P U= (Uy Uy = Uy Uyp Uy Upg - Up)
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B'U=(0|V A6
Appendix Ov) (A6)

Appendix A: Momentum Part Integrals. The phase-space  wherel1(3N) is the N x 3N identity tensor and/ is a 6 x 6
volume (proportional to the Thomagermi classical density  matrix (should not be confused with the potential function).
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With these new bases, the vec®ran be expressed &=
UTP = (X1, Xp) with X; € /4 andX; € /5, andA becomes

3N—-6 6

A=2mf |‘| dX;; !"dxzyk O[XIX, + XIX, — 2m{E —
= = ~
V(R)}] S[VX, — b]|detU]| (A7)

We here change the variables froxy to X3 = VX, and
integrating onXs, and X leads to

|detU| N6 .
A= dX,. o[X Xy —a
|detV|f|_| 1) [ 1 ]
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whereo. = 2m{E — V(R)} — b"(VVT)~1b, s= 3N — 6, and
|detU] is unity from eq A5. Furthermore one can show

m 3M*¥2,/detl (A9)

|detV| =

and
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b2meM C)

whereM = Nmis the total masdy is the inertia tensor of the
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wheremy is the reduced mass = (N — 1)nVN. The flux is
represented by the following expression in terms of the same
guantities defined in the previous subsection

WE.P.J) =D, [dR d[r,. — 1] A(R,B,EDb) (A15)

and
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where theDy is the degeneracy of the dissociative atom and
the integration orX; 1 is performed in the positive range only.
We transform the variabl¥, to X3 = VX, and integrate over
X3, which leads to

2 3N—-6
L= dX,; O[X1X; — a]X
\detV/| —lf|_| 1j [ 1 ] 1,1
(A17)

Integration overX; and substituting eqs A9 and A10 into eq
Al7 give rise to

cluster with respect to the center-of-mass, ani the angular 3N-6
momentum of the center-of-mass. Substituting egs A9 and A104 = f I_! dXy; fo7dX; ; O[%, o+
into eq A8, we have |detV| -1
N-6

o) 2PN ) 2 Z X$; = Xy,

A= e @) -
S\ p3/2 _
F(Z)M ydetly (271)(3 172, N2 (E VR - iz_
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N

Bringing these back to the expression of the phase-space volume, (O JJTT(J - JJ) (A18)

we finally have

(2.77:)3/2 3N/2 dﬁ B PZ
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QEPJ) =

By settingm = 1, one obtains eqs 12.

2. Flux. Next the flux integral in the case of the monomer
evaporation is described. First; ;above should be chosen as

1 -1 -1 T
Uy, = N (r,e,N — lrre,...,N — 1.',6) (A13)
r —

\V N-1

After all, the flux in the case of the monomer evaporation can
be written as
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By settingm = 1, we obtain eq 13.

3. Kinetic Energy Release (KERJhe integral crucial for
the distribution of KER is discussed for the case of the vanishing
total linear and angular momenta. Because of the rotational

wherer . is a vector connecting an evaporating atom and the symmetry it is sufficient to carry out the integral with respect

daughter cluster, angk is its length. In this frame, the relation

betweenr,. and Xy ; is represented as

(A14)

to a frame where the position vector of the dissociative atom
(Nth atom) is represented as

I‘N = (XN’ yN’ ZN)T = (N N rev 0 O) (A20)
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In this frame the (unnormalized) probability density of the KER defines a coordinate transformation fropa pnz) to (51, &2) ,

is written as
P Eex) =
N—-1 N—-1 N _ 1
f.: dr; dp; ['dpy 6 IZri+( N rr, 0, O)]
N—1 N—1
5[ P + Pl 6[ Ji Tindte O[E — H{ri} {pih)] x

1
a’ ( mt, 2+2|_T| L +£JN1IN11JN1) (A21)

and both the angular momentum of the daughter clukier
and the orbital angular momentum of the two fragmelnts
depend on the momentum of tiNth atom,py in such a way
that

__N =N
N— N N— DN
n= (0, —X\Pnz XNpNy)T (A22)

‘JNfl

Furthermore, the kinetic energy release is also written as a

function of thepy, that is

1 1 1
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wherete = pndmy, Mn—1 is the mass of the daughter cluster,

fin is @ 2-vectorn = (Pny Pn)T andin—1 is a 2 x 2 matrix

- (IN—l_1 7z _(IN—l_l zy
IN-1 = (A24)
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Substituting eq A23 into eq A21 and integrating out the kinetic

part of the daughter clustef]{";" dp;) lead to
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wheres = 3(N — 1) — 6. Then, we defind, 4, andUy_; as
eigenvalues of théy—; and a matrix to dlagonal|zl$,| 1. Unes

which is applied to eq A25 as
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where
1 +2
A =ﬁ+_e/1' for 1=1,2

The relation between the inertia tensor of the parent cluster and
the daughter cluster can be proved as

detl, = (2m)?A,A, detl,_, (A27)

Substituting eq A27 into eq A26 leads to the final form
N—1

dr;
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Pu(EiEK) =

X

This can be written in the convolution form as

PUE€) =[5 "de Q5(6) Qo 1(E—e—6) Wiley)  (A29)
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.
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21
ot % S
W(ex) = 2mey (A32)

The configuration-space density of states in the dividing surface,
which is written as eq A30 in the specific frame mentioned
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above, can be written as eq 17 in the general Cartesian frame (34) Parneix, P.; Amar, G. F.; Bhignac, PhChem. Phys1998 239,
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